Mark scheme

Q	uesti	on	Answer/Indicative content	Marks	Guid	lance
1	а		$x^2 + 5x - 7x - 35$ [= $x^2 - 2x - 35$]	1		All four terms must be seen Could be seen in a grid
	b		–35 [y-intercept] –5 and 7 [roots]	1	Must be in correct place	Allow (0, –35) Allow (–5, 0) and (7, 0)
	С		(1, –36)	2	B1FT for 1 B1FT for –36	B1FT is mid- point of their two roots from 21(b) provided one is positive and one negative Their 1 must be > 0 B1FT for their value of x Their –36 must be < 0
			Total	5		<u>'</u>
2			61[cm] with correct working	6	M1 for $8x + 3 = 6x + 8$ M1 for $8x - 6x = 8 - 3$ oe	Correct working requires evidence of at least M1M1A1M1 or M1M1A1M2 FT their equation if wrong sides equated Accept only: $8x + 3 = 4x + 5$

			or 6x + 8 = 4x + 5
		A1 for <i>x</i> = 2.5 oe	After M1, $x = 2.5$ implies M1M1A1 Do not penalise if their value of x is not subsequently used in their work leading to an algebraic final answer e.g. $18x + 16$
		M1 for 8 <i>x</i> + 3 + 6 <i>x</i> + 8 + 4 <i>x</i> + 5 soi	Implied by 18 <i>x</i> + 16
		M1 for substitution of their x into 8x + 3 or 6x + 8 or 4x + 5 or their 18x + 16	Their x must be > 0 and clearly stated as x = Substitution of their x into 8x + 3, 6x + 8 and 4x + 5 and then adding implies M1 M1.
		If 0 or 1 scored, instead award SC2 for answer 61	Alternative method using trials:
		If 0 scored, instead award SC1 for <i>x</i> = 2.5	In all trials x must be > 0 M1M1A1 for both $8x + 3$ and $6x + 8$ correctly evaluated with $x = 2.5$ or M1M1 for three correctly evaluated trials of both $8x + 3$ and $6x + 8$ with consistent value of x or

						M1 for two correctly evaluated trials of both 8x + 3 and 6x + 8 with consistent value of x AND M2 dep on at least M1 for their x substituted into their 18x + 16 oe or M1 dep on at least M1 for their x substituted into 4x + 5 M1 dep on previous M1 adding their three lengths
			Total	6		
3			<i>y</i> ¹⁶	1	1	
			Total	1		
4	а	i	77	1		Condone extra correct terms e.g. 230,
		ii	9	2	M1 for add 1 then divide by 3 soi	Allow embedded answer for M1 e.g. 9 × 3 -1= 26
	b		4 <i>n</i> oe	1		Condone poor notation e.g. $4 \times n$, $n = 4n$, 4n + 0, $4n - 0oe e.g. n + n + n+ n$
			Total	4		

			Rectangle 4 by 6 correctl	d				
5	а					1		Does not need shading nor internal lines
			Pattern Calculation	Number of tiles			B2 for first four cells correct	Allow 6 × 4
			1 1 × 3	3		or		
			2 2×4	8			B1 for two of the first four cells	
	b		3 3×5	15		4	correct	Allow 7 × 5
			4 4×6	24			B1 for 10 × 12 and 120	
			5 5×7	35				
			10 10 × 12	120		B1 for <i>n</i> × (<i>n</i> + 2)	Condone $n \times n$ + 2 × n	
			$n \qquad \qquad n \times (n+2)$	n² + 2n				l
	С		4355			3	M2 for 4225 + $2\sqrt{4225}$ oe or $\sqrt{4225} \times (\sqrt{4225} + 2)$ or M1 for $\sqrt{4225}$	Accept 65 ± 130 May be $\sqrt{4225} = y \text{ then } y \times (y+2)$ Accept $65 \times 65 \text{ for } 4225$ and $65 \text{ for } \sqrt{4225}$ in M2 and M1
			Total			8		
6			x → x4 → +6 → y			2	B1 for two of x × 4 + 6 y correctly placed	
			Total			2		
7			$w = \frac{p}{5}$ or $w = p \div 5$ final answ	wer		1		Accept $\frac{p}{5} = w$ or p $\div 5 = w$
			Total			1		
8		i	6			1		

	ii	19	2	M1 for 36 ÷ 3 soi 12 or ÷ 3 and +7 written under appropriate parts of machine	May draw their own machine
		Total	3		
9		x = y + 4 final answer	1		Accept <i>y</i> + 4 = <i>x</i>
		Total	1		
10		12 000 with correct working	6	M3 for $\frac{x \times 1.5 \times 6}{100} = \frac{x \times 1.1 \times 7}{100} = 156$ better Or M1 for $\frac{x \times 1.5 \times 6}{100}$ oe M1 for $\frac{x \times 1.1 \times 7}{100}$ oe AND M1FT for correctly removing fractions	Correct working requires evidence of at least 3 M marks Accept any letter for x e.g. M3 for $x \times [0].015 \times 6 = x \times [0].011 \times 7 + 156$ or $[0].09x = [0].077x + 156$ e.g. $[0].015x \times 6$ or $[0].09x \times 6$ or $[0].09x \times 6$ or $[0].09x \times 6$ or $[0].010x \times 7$ or

						equation in one variable
					M1FT for correct single <i>x</i> term isw	
					If 0 , 1 or 2 scored, instead award SC3 for answer 12 000 with no or insufficient working	e.g. [0].013x [= 156] Note: [0].09x – [0].077x = 156 scores M4 Any calculation of 1.5% or 1.1% of 156 scores 0 For additional information refer to '2024 November, J560/03, Alternative, Mark Scheme Appendix' within downloadable extra resource materials.
		Total		6		
		Statement Value of x True Fa	Ise			
		x>⁻1 3 ✓			B2 for three	
11		x<-2 -2 √		3	correct or	
		$\frac{x}{10} = 0.5$ 50	×		B1 for two correct	
			×			
		-2 < x < - 0.7	×			
		Total		3		
12		6.7		3	B2 for 6.68 or M1 for 21 ÷ Π	

	Total	3		
13	−4 <i>j</i> + 9 <i>k</i> final answer	2	B1 for −4 <i>j</i> or 9 <i>k</i> in final answer or correct answer seen and spoilt	9 <i>k</i> + – 4 <i>j</i> scores B1
	Total	2		
14	18 with correct working	5	Finding adult cost (a) directly: M3 for 6a + 2a - 26 = 118 or M2 for 6a + 2(a - 13) or M1 for a - 13 M1 for 8a = 144 OR M2 for 118 + 26 or M1 for 13 × 2 used, may be implied by use of 26 M1 for their(118 + 26) ÷ 8 Simultaneous Equations	Correct answer from trials scores 5 "Correct working" requires evidence of at least 3 method marks Finding child cost (c) first: M3 for 6c + 2c + 78 = 118 or M2 for 6(c + 13) + 2c or M1 for c + 13 M1 for 8c = 40 or c = 5 OR M2 for 118 - 78 or M1 for 6 × 13 used, may be implied by use of 78 M1 for their(118 - 78) ÷ 8 M1 for their(118 - 78) ÷ 8 + 13 Trials

		M1 for 6a + 2c = 118 M1 for a - c = 13	M3 for correctly evaluated trial using [a =] 18 and [c =] 5
		M1 for correct method to equate coefficients of one variable, allow one arithmetic error	M2 for two correctly evaluated trials where $c = a - 13$ or
		M1 for correct method to eliminate one variable, allow one arithmetic error	M1 for one correctly evaluated trial where $c = a - 13$
		If 0 or 1 scored, instead award	
		SC2 for 18 with no working or insufficient working	
		If 0 scored instead award	
		SC1 for 5 with no working or insufficient working	
Total	5		
2160 with correct working	5	Method 1 M3 for $\frac{360}{4 \times 0.05}$ oe may be implied by 1800 or M2 for $\frac{360}{0.05}$ oe or $\frac{360}{4} \div 5$ or $\frac{360}{5} \div 4$	Correct working for 5 marks requires evidence of at least M2 N/C methods need labels or operators oe 360 = 1800 × 4 × (0.05 or 5 / 100)
			M1 for correct method to equate coefficients of one variable, allow one arithmetic error M1 for correct method to eliminate one variable, allow one arithmetic error If 0 or 1 scored, instead award SC2 for 18 with no working or insufficient working If 0 scored instead award SC1 for 5 with no working or insufficient working or insufficient working Total 5 Method 1 M3 for 4 x 0.05 oe may be implied by 1800 or M2 for

	or M1 for $\frac{360}{4}$ or $\frac{360}{5}$ or $\frac{P \times 5 \times 4}{100} = 360$ oe AND M1dep for their $1800 + 360$	or N/C e.g. 5% = 90, 1% = 18, 100% = 1800 or 20% = 360, 10% = 1800 or 20% = 360, 360 × 5 = 1800 or or 1 year = 90, 1% = 18, 100% = 1800 NB 360 × 5 = 1800 alone scores M0 May be implied by 9000 or 18 or N/C e.g. 5% = 90, 1% = 18 or 20% = 360, 10% = 180 May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360, 10% = 180 May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g. 5% = 90 or 20% = 360 "May be implied by 90 or 72 or N/C e.g.
	OR Method 2 Trials M2 for two complete trials bracketing 360 and resulting in 360 ±10 or M1 for one	show substitution and evaluation

				complete trial ≠ 360 If 0 or 1 scored, instead award SC2 for 2160	× 4 oe = 350 e.g. 500 × 0.05 × 4 oe = 100 with no working or insufficient working
		Total	5		·
16	а	<i>h</i> ⁵ final answer	1		Not <i>h5</i> unless 5 clearly raised
	b	4f(g + 3) final answer	2	B1 for 4(<i>fg</i> + 3 <i>f</i>) or <i>f</i> (4 <i>g</i> + 12)	Allow e.g. 1g and inclusion of × Condone missing final bracket Correct answer seen and then spoilt B1
		Total	3		
17	а	Equation	1		Allow any clear intention e.g. arrow to equation
	b	Inequality	1		Allow any clear intention e.g. arrow to inequality
		Total	2		
18	а	The length is three times the width oe or The width is a third of the length	1		"Three times" or "a third" is not enough unless it is clear that length = 3 ×

					width Accept 3k is three times k oe or L = 3W oe Do not accept values or length = 3 × k Mark the best response as long as it is not contradictory or has an incorrect statement
b		$3k^2 - g^2$ final answer	2	M1 for 3 <i>k</i> × <i>k</i> – <i>g</i> × <i>g</i> oe	Ignore units if included oe for M1 may be e.g. $3k \times k - g^2$
С	-	8 <i>k</i> final answer	3	B2 for correct answer unsimplified or B2 for $8k - 2g$ [+ g + g] or M2 for $3k + k + 3k - g + k - g$ [+ g + g] oe or	Condone 8k + 0[g] for 3 marks Accept in any order Accept e.g. 2g for g + g
				M1 for [height =] <i>k</i> - <i>g</i> or [length =] 3 <i>k</i> - <i>g</i>	seen on diagram in correct position
	ii	10.2 nfww	2	M1 for <i>their</i> part (i) = 81.6 or $\frac{81.6}{8}$	Their part (i) must be algebraic in terms of k or k and g Their (a) can be rearranged

					Note: $8k - 2g$ = 81.6 scores M1 but does not score the second mark as from wrong working
		Total	8		
19	а	Correct curve through given points	3	B2 for 6 points correctly plotted or B1 for 4 points correctly plotted	Half square accuracy. For curve: No line segments used Condone minor feathering or doubling Max half square vertically or horizontally from any point
	b	their –0.7 and their 2.7	2	Strict FT from <i>their</i> graph. B1 for each or ruled <i>y</i> = 4 cutting <i>their</i> curve twice or points indicated on <i>their</i> curve where <i>y</i> = 4	Must have graph to score Do not accept coordinates Half square accuracy or better For thick lines mark centre of line Ruled line within half square of <i>y</i> = 4 throughout <i>Their</i> curve may be a polygon or straight line If intersection at mid-point of small square e.g0.75 accept -0.8 or -0.7
		Total	5		1

20			113 or 113.1 or 113.09 to 113.11	2	M1 for π × 6 ² oe	Allow 36π for 2 marks π gives 113.0973 3.142 gives 113.112 For M1 π may be evaluated allowing $\frac{22}{7}$ or 3.14 or 3.142
			Total	2		
21	а		(x-3)(x+10) $x^2 - 3x + 10x - 30$ or better $x^2 + 7x - 30 = 90$ or $x^2 - 3x + 10x - 30 = 90$	B1 M2 A1	M1 for 3 out of 4 terms correct A1 dep on B1M2 With no errors leading to the answer	B1 implied by $(x-3)$ and $(x+10)$ in a multiplication grid Condone missing final bracket e.g. $(x-3)(x+10)$ +7x is two terms $\frac{A1}{alternatives:}$ $x^2 + 7x - 30 - 90 = 0$ or $x^2 - 3x + 10x - 30 - 90 = 0$
	b	İ	(x + 15)(x - 8) [= 0] -15 and 8	M2 B1FT	M1 for $(x + a)(x + b)$ where $ab = -120$ or $a+b = 7$ or $x(x + 15) - 8(x + 15)$ or $x(x - 8) + 15(x - 8)$	Condone $(x + 15)(x - 8) = y$ for 2 marks For M2 and M1 condone the omission of the final bracket.

					correct or FT <i>their</i> linear factors	(x - 15)(x + 8) then -15 and 8 scores M1B0 If both correct after $x(x + 15)$ - $8(x + 15)$ or $x(x - 8)$ + 15(x - 8) allow M2B1 BOD
		ii	5	1	FT dep on 2 integer answers given in part (b)(i) their positive answer – 3 that results in a positive value	
			Total	8		
22			3 30	2	B1 for each in correct place	
			Total	2		
23						Accept answer -7 or ± 7
			7 nfww	3	M2 for $5^2 + 2 \times 3 \times 4$ oe or M1 for $[u^2 =] 5^2$ or $[2as =] 2 \times 3 \times 4$	M2 implied by $[v^2 =] 49 \text{ or } \sqrt{49}$ M1 implied by $[u^2 =] 25 \text{ or } [2as =] 24$
			7 nfww	3 3	4 oe or M1 for $[u^2 =] 5^2$ or	$[v^2 =] 49 \text{ or } \sqrt{49}$ M1 implied by $[u^2 =] 25 \text{ or }$
24	а				4 oe or M1 for $[u^2 =] 5^2$ or	$[v^2 =] 49 \text{ or } \sqrt{49}$ M1 implied by $[u^2 =] 25 \text{ or }$

						Not e.g. 24×wy, w24y, y24w, wy24
			Total	3		
25			20	1		
			Total	1		
26			167 with correct working	5	M2 for $5x + 25 = 180$ oe or M1 for $(x - 18) + (4x + 43) = 180$ oe AND A1 for $[x =] 31$ M1 for $4 \times their x + 43$ If 0 or 1 scored, instead award SC2 for 167 with no or insufficient working If 0 scored, instead award SC1 for $[x =] 31$ or $y = 4x + 43$	"Correct working" requires evidence of at least M2 or M1M1 Trials: Correct answer from trials scores 5 Allow correct substitution into $(x - 18) + (4x + 43)$ to imply M1 if 180 also stated Dep on at least M1 their $x \le 34$ SC marks may be seen on diagram
			Total	5		
27			[x =] 4 [y=] 1 final answer	3	M1 for correct method to eliminate one variable A1 for $x = 4$ A1 for $y = 1$ If 0 scored SC1 for a pair of values that satisfies one of the original equations	Allow one error Or correct substitution of one equation into the other and getting to $kx = n$ Correct

					answer from trials scores 3
		Total	3		
28	а	8	1		
	b	9.5	3	M1 for $26 = 4(c - 3)$ M1FT for $6.5 = c - 3$ or for $26 = 4c - 12$ OR Without formal algebra: M1 for $26 \div 4$ implied by 6.5 M1 for (their 6.5) + 3	First correct step only apply FT to an equivalent M1 expression Accept any letter for <i>c c</i> must not be blank
		Total	4		
29		x > -2 AND	4	B2 for $x > -2$ or M1 for $8x > 1$ – 17 or better AND B2FT for their inequality correctly shown or B1FT for correctly placed circle for their $x > -2$ but with hollow circle and incorrect arrow or for filled circle with correct arrow	Solution to inequality Allow M1 for this expression with other inequality symbols or equals sign or [x =] -2 as solution (can be implied by mark/circle on the diagram) or trials leading to selection of -2 or final correct trial using -2 Displaying the solution: Display must show an inequality that fits on the number line

				for FT Mark to candidate's advantage either x > -2 or their inequality Accept an arrow of any length or a line reaching 4 If no solution to inequality seen: Hollow circle at -2 arrow to right M1B2 Hollow circle at -2 arrow to left M1B1 Solid circle at -2 arrow to left M1B1 Solid circle at -2 arrow to right M1B0 Mark at -2 no line or arrow M1B0 Circle and/or arrow at other than -2 M0B0
		Total	4	
30	а	:	1	May be drawn at the end of the sequence
	b	35 Add 3 to each pattern 3 <i>n</i> + 5 or 3 × 10 + 5 or 14 + 21	1 1	Answer must not come from a drawing. For additional information refer to 'Qn 4b, 2024

					June, Alternative J560/01, Mark Scheme Appendix' within downloadable resource materials.
		Total	3		
31	а	$x^2 + 3x - 5x - 15$ [= $x^2 - 2x - 15$]	1	Examiner's Comment Most candidates were clearly show this expa The mark scheme exp to show the correct 4 to find the two brackets. Camade errors by having for the coefficients.	not able to nsion. Dects candidates term expansion andidates often
				This question was also omitted by a significant proportion of candidates.	
				Must be in correct place. Examiner's Commen	Allow (0, -15) Allow (-3, 0) and (5, 0)
	b	-15 [y-intercept] -3 and 5 [roots]	1	A very small proportion gained marks in this qualified Most candidates did not to Question 21 (a) and the information there to here. Most candidates who do the correct y-intercept. Those who gave answer intercepts tended to gi	ot link this part d so did not use o help them did score gave of –15. vers for the x-

					This question was omitted by a significant proportion of candidates.		
					B1FT for 1	B1FT is mid- point of their two roots from 12(b) provided one is positive and one negative. Their 1 must be > 0	
					B1FT for –16	B1FT for their value of <i>x</i> their - 16 must be < 0	
			(1, ⁻ 16)	2	Examiner's Comments		
	С				A very small proportion of candidates gained marks in this question.		
					Where candidates so was for having the cocoordinate of 1. A sm candidates did gain t (FT) mark for their <i>x</i> -however this was ran number of candidates answer Question 21	orrect x- nall number of he follow through coordinate, e due to the large s who did not	
					It was very rare to aw the <i>y</i> -coordinate (eith the FT).		
					A very small number of high attaining candidates achieved the correct answer from using completing the square.		
			Total	5			
32			28[cm] with correct working	6		Correct working requires evidence of at least M1M1A1M1	

			or M1M1A1M2
		M1 for 5 <i>x</i> + 4 = 3× + 7	FT <i>their</i> equation if wrong sides equated
		M1 for 5 <i>x</i> – 3 <i>x</i> = 7 – 4 oe	Accept only: 4x - 1 = 5x + 4 4 or 4x - 1 = 3x + 7
		A1 for <i>x</i> = 1.5 oe	After M1 , <i>x</i> = 1.5 implies M1M1A1
			Do not penalise if their value of x is not subsequently used in their work leading to an algebraic final answer e.g. $12x + 10$.
		M1 for 5 <i>x</i> + 4 + 3 <i>x</i> + 7 + 4 <i>x</i> - 1 soi	implied by 12 <i>x</i> + 10
		M1 for substitution of <i>their x</i> into 5 <i>x</i> + 4 or 3 <i>x</i> + 7 or 4 <i>x</i> – 1 or their 12 <i>x</i> + 10	their x must be > 0 and clearly stated as x = Substitution of their x into 5x + 4, 3x + 7 and 4x – 1 and then adding implies M1 M1.
			Alternative method using trials:
		If 0 or 1 scored, instead award SC2 for answer 28 If 0 scored, instead award SC1 for $x = 1.5$	In all trials <i>x</i> must be > 0 M1M1A1 for both 5 <i>x</i> + 4 and 3 <i>x</i> + 7 correctly

evaluated with x = 1.5or M1M1 for three correctly evaluated trials of both 5x + 4 and 3x+ 7 with consistent value of x or M1 for two correctly evaluated trials of both 5x + 4 and 3x+ 7 with consistent value of x AND M2 dep on at least M1 for their x substituted into their 12x + 10 oe or M1 dep on at least M1 for their x substituted into 4x - 1M1 dep on previous M1 adding their three lengths **Examiner's Comments** Candidates who attempted this question generally achieved at least one mark. This question was challenging for

					most candidates, but those who scored did so in one of two ways. The most common was to find the sum of the three sides as an expression (this was given 1 mark). Some candidates however incorrectly equated this to 180.
					The other way was to equate the two correct sides $(5x + 4 = 3x + 7)$, which a small number of candidates did and this was also given M1. Some were then not able to solve this equation correctly, while those that did correctly find $x = 1.5$ often did not continue the question any further.
					Of those candidates who did find a value for x , some summed the sides algebraically and then substituted their value for x , while others substituted it into all three sides and then added (some of these evaluated one or more of the expressions incorrectly and therefore lost marks).
					A very small proportion of candidates attempted trials, but when they did so they often were unsure how to interpret their values and therefore subsequent trails appeared random.
					It was very rare for candidates to be given the Special Case (SC) marks, which shows that generally candidates were showing sufficient workings.
			Total	6	
					Condone extra correct terms e.g. 176,
33	а	i	59	1	Examiner's Comments
					Most candidates gave the correct answer of 59. Those who did not score had generally either made arithmetic errors or omitted the question entirely.

		ii	7	2	Examiner's Comment Most candidates gave answer of 7 and score A small number of ca 1 mark for a correct number arithmetic errors, or for the most common must of find $\frac{20-1}{3}$, usually lead 6.(666).	e the correct ed 2 marks. Indidates scored nethod with or giving an $7 \times 3 - 1 = 20$. Is conception was adding to Condone poor notation e.g.5 $\times n$, $n = 5n$, $5n + 0$, $5n - 0$.
	b		5n oe	4	Examiner's Commentation Even though the mark condoned poor notation equivalent answers how candidates were unsufficient to the most common error of the most common error of the sequence of t	oe e.g. n + n + n + n + n + n + n nts k scheme on and ere, quite a few uccessful. rors were n + 5, ting the next
				•		
34			<i>y</i> ⁸	1	Examiner's Commerce Responses to this que mixed. Higher performanderstood the relation	estion were ning candidates

					the powers and successfully answered y^8 .		
					Those who were less successful divided 12 by 4 to get y^3 .		
			Total	1			
					Examiner's Comments		
35	а	i	6	1	This was answered well.		
					Common errors were $9 - 6 \times 2 = -3$ or -6 .		
					M1 for 36 ÷ 2 soi 18 or ÷ 2 and +6 written under appropriate parts of machine May draw their own machine		
		ii	24	2	Examiner's Comments		
					This part was also generally answered well. A few candidates gained a method mark for showing 18 or 36 ÷ 2, however the working seen often suggested that less successful candidates did not understand the inverse process.		
					A common error was 12.		
			x ×3 +8 y		B1 for two of x × 3 + 8 y correctly placed Examiner's Comments		
	b			2	Many candidates were unsuccessful here. Most just wrote the terms and operations in the boxes in the order given, so <i>y</i> was the input, 8 or +8 was in the first box and so on.		
					A few candidates gained B1 for placing <i>x</i> and <i>y</i> in the correct places.		

		Total			5		
36	а	Pattern 1 2 3 4 5 10 n	Calculation 1 × 2 2 × 3 3 × 4 4 × 5 5 × 6 10 × 11 n × (n + 1)	Number of tiles 2 6 12 20 30 110 $n^2 + n$	4	B2 for first four cells correct or B1 for two of the first four cells correct B1 for 10 × 11 and 110 B1 for n × (n + 1) Examiner's Comme Almost all candidates question and many smark. The row for Pausually correct and the sward sward of the common error what errors. The common error what errors are common to the first on from the rows about the final row, which where the final row is the first or the first o	s attempted this acored at least a attern 4 was the row for Pattern eect, with only a with the row for ite 6 × 7 and 42, dn't follow directly ove. Is successful in was intended to the last part of the last such as n + n +
	b	4160			3	M2 for $4096 + \sqrt{4096} \circ e$ or $\sqrt{4096} \times (\sqrt{4096} + 1)$ or M1 for $\sqrt{4096}$ With many errors in the table in part (b), the second se	he final row of

				attempted by just over candidates and only proportion of the atternorm. Common errors were or work out 4096 ² or few attempted √4096. Successful responses = 12.	a very small mpts were to answer 4096 4096 ÷ 4. Very Several less
		Total	7		
37		12 000 with correct working	6	M3 for $\frac{x \times 15 \times 5}{100} - \frac{x \times 1.1 \times 6}{100} = 108$ oe or better or M1 for $\frac{x \times 1.5 \times 5}{100} \text{ oe}$ M1 for $\frac{x \times 1.1 \times 6}{100} \text{ oe}$ AND M1FT for correctly removing fractions M1FT for correct single x term isw If 0, 1 or 2 scored, instead award SC3 for answer 12 000 with no or insufficient working	Correct working requires evidence of at least 3 M marks Accept any letter for x e.g. M3 for x × [0].015 × 5 = x × [0].011 × 6 + 108 or [0].075x = [0].066x + 108 e.g. [0].015x × 5 or 100 or 0.075x e.g. [0].011x × 6 or 100 or 0.066x If both equations seen but only one used allow M1, M1 to stand FT their equation in one variable e.g. [0].009x [= 108] Note: [0].075x— [0].066x=108 scores M4

Any calculation of 1.5% or 1.1% of 108 scores

For additional information refer to '2024 November, J560/03, Mark Scheme Appendix: item 3' within downloadable extra resource materials.

Examiner's Comments

This question was attempted by many candidates, but fewer than hoped as there was a question in a similar context in summer 2024.

Of those who did attempt the question, few scored above 2 marks.

A very small number of candidates attempted the main method of creating expressions and then an equation using *x* and 108.

A common start (which probably led into the candidates attempting the question numerically rather than algebraically) was to recognise that Darcie received 7.5% over the time of the investment and Ivan 6.6%; each of these earned M1. After that, methods often became poorly organised calculations, possibly involving 108, or attempting trials of 7.5% of an amount and, sometimes, 6.6% of the same amount. Too often the calculations were incorrect percentage calculations, e.g. 7.5% of £200 = 200 × 7.5.

The trial and improvement scheme did not provide additional credit for multiple attempts at different amounts.

				Exemplar 3
				1.5=0.015 Time 59 0.015×5= 0.075 0.075 0.11×6 0.11×6=0.46 0.6066 0.004
				This candidate represents one of the few to construct a complete solution. After a faltering start with several errors, they finally achieve a correct statement midway down the response. Initial statements have varying numbers of zeros after the decimal point; after seeing the correct 0.075 (of x) it becomes the incorrect 0.75 and there is similar uncertainty for 0.066, but this is condoned as transcription errors as the difference is then given correctly as 0.009 x . The rest of the method is correct, even though the order is uncertain, as presumably $0.009x = 108$ comes before $\frac{108}{0.009}$, which is then repeated at bottom left.
		Total	6	
38		Rectangle 4 by 5 correctly orientated	1	Does not need shading nor internal lines Examiner's Comments This was usually correct. The occasional errors were to rotate the shape or to draw a square (generally 5 × 5, but occasionally 4 × 4).

İ		Total	1		
39	а	x = y - 3 final answer	1	Accept $y - 3 = x$ Examiner's Comments This was reasonably answered by more successful candidates. Less successful candidates were unsure of algebraic processes. Common errors were $y + 3$, $3y$, $3 - y$ and $y \div 3$.	
	b	$w = \frac{p}{3} \text{ or } w = \rho + 3 \text{ final answer}$	1	Accept $\frac{p}{3} = w \text{ or } p + 3 = w$ Examiner's Comments Responses here were slightly less successful than part (a) and similar errors in algebraic processes were made. Common errors were $w = \frac{3}{p}$, $w = 3p$ and $w = 3 + p$.	
		Total	2		
40		Statement Value of x True False $x > -1$ 5 \checkmark $x \le -1$ -1 \checkmark $\frac{x}{10} = 0.7$ 70 \checkmark $x - 2 \ne 5$ 3 \checkmark $-1 < x < 0.7$ 0 \checkmark	3	B2 for three correct or B1 for two correct Examiner's Comments Many candidates gained at least one mark on this question. There was no obvious pattern to where incorrect responses occurred, but it was unusual to find all the statements answered incorrectly.	

			Total	3	
			5.4	3	B2 for 5.41 or M1 for 17 ÷ π
41					Examiner's Comments Many candidates did not know how to answer this question. A common incorrect method was to multiply 17 by π, while others divided 17 by 2.
					Assessment for learning
					Candidates should consider the reasonableness of their answer. This may have helped some realise the diameter of a circle cannot be larger than its circumference.
			Total	3	
			-2 <i>j</i> + 11 <i>k</i> final answer		B1 for -2 <i>j</i> or 11 <i>k</i> in final answer or correct answer seen and spoilt 11 <i>k</i> + - 2 <i>j</i> scores B1
					Examiner's Comments
42				2	Although many managed to score 2 marks here, there was also a lot of confusion over which terms to add and which to subtract (as shown in the exemplar below) with $18j$ and $3k$ seen often. Many candidates struggled to deal with $-2j$, with the most common response being $2j + 11k$ (which scored 1 mark for $11k$).

				18-48-19-78 C)+10) 46(+7K
					8)-114 121
				This response has be incorrect and did not	
		Total	2		
43		22 with correct working	5	Finding adult cost (a) directly: M3 for 5a + 2a - 12 = 142 or M2 for 5a + 2(a - 6) or M1 for a - 6 M1 for 7a = 154 OR M2 for 142 + 12	Correct answer from trials scores 5 "Correct working" requires evidence of at least 3 method marks Finding child cost (c) first: M3 for $5c + 2c + 30 = 142$ or M2 for $5(c + 6) + 2c$ or M1 for $c + 6$ M1 for $c + 6$ M2 for $c + 6$ OR M2 for $c + 6$ OR M1 for $c + 6$ M1 for $c + 6$ M1 for $c + 6$ M1 for $c + 6$ M1 for $c + 6$ M1 for $c + 6$ M1 for $c + 6$ M2 for $c + 6$ OR

			M1 for their(142 –30) ÷ 7 + 6
		Simultaneous Equations	<u>Trials:</u>
		M1 for 5a + 2c = 142 M1 for a - c = 6	M3 for correctly evaluated trial using [a =] 22 and [c =] 16 or
		M1 for correct method to equate coefficients of one variable, allow one arithmetic	M2 for two correctly evaluated trials where $c = a - 6$ or
		error	correctly evaluated trial where <i>c</i> = <i>a</i> – 6
		M1 for correct method to eliminate one variable, allow one arithmetic error	
		If 0 or 1 scored, instead award SC2 for 22 with no working or insufficient working	
		If 0 scored instead award SC1 for 16 with no working or insufficient working	
		Examiner's Comme	<u>nts</u>
		Only the more able ca with algebra and follo a correct conclusion.	wed it through to

					instead. If candidates use trials, they should be encouraged to set them out in an ordered manner; many responded to this question with a page filled with assorted calculations and it was not always possible to link the input with the output.	
			Total	5		
44	а	i	9 <i>a</i> final answer	1		Accept 9 × a and a9 and a × 9
		ii	⁻x + 6 – 4y final answer	2	B1 for ¬x seen or [+]6 – 4y seen in final answer	Accept answer in any order
	b		3	1		
			Total	4		
45	а		7(x-3)	1		Condone missing final bracket
	b		5x (3 + x)	2	B1 for $5(3x + x^2)$ or $x(15 + 5x)$	Condone missing final bracket
			Total	3		
46	а		at = v − u seen as single statement	1		Accept e.g. ⁻ <i>at</i> = ⁻ <i>v</i> + <i>u</i>
	b		15	2	M1 for correct substitution 3 + 2 × 6 oe	For M1 accept a two-step evaluation with an arithmetic slip e.g. 2 × 6 = 10 followed by 10 + 3
			Total	3		

47		200 with correct working	9	M1 for $2(x + 1)$ = $3x - 7$ oe M1 for reaching ax = b FT their equation A1 for $x = 9$ OR $\frac{\text{Trials}}{\text{M1}} \text{ for one trial}$ into $2(x + 1)$ and $3x - 7$ evaluated correctly M1 for two trials of $2(x + 1)$ and $3x - 7$ evaluated correctly A1 for $[w =]$ 10 and $[l =]$ 20 AND $\frac{\text{M2}}{\text{M2}} \text{ for } (\text{their } x + 1) \times (3 \times \text{their } x - 7)$ or $\frac{\text{M1}}{\text{M1}} \text{ for } (\text{their } x + 1) \text{ or } (3 \times \text{their } x - 7)$ or $\frac{\text{M1}}{\text{M2}} \text{ for } (\text{their } x + 1) \text{ or } (3 \times \text{their } x - 7)$ or $\frac{\text{M1}}{\text{M2}} \text{ for } (\text{their } x + 1) \text{ or } (3 \times \text{their } x - 7)$ or $\frac{\text{M2}}{\text{M3}} \text{ for } (\text{their } x + 1) \text{ or } (3 \times \text{their } x - 7)$ or $\frac{\text{M3}}{\text{M3}} \text{ for } (\text{their } x + 1) \text{ or } (3 \times \text{their } x - 1)$ or $(3	"Correct working" requires evidence of at least M1M1A1 or alternate convincing approach FT from an equation with <i>x</i> on both sides only Their <i>x</i> must be a positive integer and stated Their <i>x</i> or their length/width may be on the diagram
		Total	6		
48	а	Equation	1		
	b	Expression	1		
		Total	2		

	1	1			I	i
49	а		8 <i>x</i> ² final answer	1		Do not accept $\frac{8x^2}{1}$
	þ		x = 3y - 15 or $x = 3(y - 5)$ final answer	2	B1 for answer $3y - 15$ or $3(y - 5)$ or M1 for a correct first step $3y = x + 15$ or $y - 5 = \frac{x}{3}$ If 0 scored, instead award SC1 for correct step to final answer FT incorrect first step	SC only awarded for 2 step attempts
			Total	3		
50	а	i	36	1		
		ii	No [because] 604 is not a multiple of 6 oe	1	Response Mark No, it goes up in 6s and the closest number to that is 606 1 No, if we kept adding 6, it would go 600 then 606 1 No, 100 × 6 = 600 so 101 × 6 = 606 1 6 does not divide into 604 and 6 is the commonality of the sequence 1 The numbers are multiples of 6 1 No, not all even numbers will be in the sequence (not incorrect but not describing why 604 isn't in the sequence) 0 No, it goes up in 6s not 2s 0 No, the sequence is going up in 6s 0	
	b	i	1	1		
		ii	Divide by 2 oe	1	Response Mark Each number is hal	 ved 1

				÷ 2 every time you go down 1 I divided the next term by 2 1 You halve 2 1 You subtract half the number to give the next number 1 The number that is subtracted is halved for the next number 1 Double each number 0	
		Total	4		
51		9 nfww	4	M3 for $5t - 2$ and their (5 × 8 + 3) correctly used together or $43 + 2 = 5t$ or $(43 + 2) \div 5$ or $5 \times 9 - 2 = 43$ OR M1 for $5 \times 8 + 3$ may be implied by 43 M1 for $5t - 2$ or 43 + 2 or for one correctly evaluated trial	e.g. an equation with a first step to solve
		Total	4		
52	а	12 <i>a</i> – 3 <i>a</i> ² final answer	2	B1 for 12 <i>a</i> or ⁻ 3 <i>a</i> ² in final answer	
	b	$x > 0.75 \text{ or } x > \frac{3}{4} \text{final answer}$	2	M1 for 4x > 11 – 8 oe or for x + 2 > 2.75 oe or for answer 0.75 oe with or without equality or wrong inequality symbol	
	С	(x+5)(x+4)	M2 B1FT		Condone final bracket missing Accept $(x + 5) = 0$, $(x + 4) = 0$ for M2

		⁻5 and ⁻4 Total	7	M1 for $(x + a)$ and $(x + b)$ where $ab = 20$ or $a + b = 9$ For correct solutions from their quadratic factors If 0 scored, SC1 for answers ± 5 and ± 4	Allow correctly completed grid with + 5 and + 4 as headers for M1
					"Twice" or "double" or
53	а	The length is twice the width oe or The width is half the length	1		"half" is not enough unless it is clear that length = 2 × width Accept 2k is double k oe or L = 2W oe Do not accept values or length = 2 × k Mark the best response as long as it is not contradictory or has an incorrect statement
				A reasonable numb	per of candidates
				Uncredited responsions both have k', 'The vist double', 'It is half are the same'. Man about what the querequesting.	vidth is double', 'It ', '2 × <i>k</i> ' and 'They y seemed unsure
	b	$2k^2 - g^2$ final answer	2		

					M1 for 2 <i>k</i> × <i>k</i> − <i>g</i> × <i>g</i> oe	Ignore units if included oe for M1 may be e.g. $2k \times k - g^2$
					Examiner's Comment Candidates found write expression extremely few logical attempts of (successful attempts area as a rectangle of A significant number of this question. Some candidates apprecognise that a rectasides must have equally although $2k \times k$ was as the answer. Often expressions congreater than 2 (such a numerical values, or numerical values, or numeric. Products of $2k^2g$) or sums of k an $k + g$, or $2k^2 + g$) were seen.	ting an challenging and vere seen approached the ninus a square). did not attempt beared to not angle's opposite al length, sometimes seen as $2k^2 - g^4$), or were solely k and g (such as d g (such as d d)
С	ij	6 <i>k</i>	final answer	3	B2 for correct answer unsimplified or B2 for $6k - 2g$ [+ g + g] or M2 for $2k + k + 2k - g + k - g$ [+ g + g] oe or M1 for [height =] $k - g$ or [length =] $2k - g$ Examiner's Comme	

			of the previous part a demonstrated the sar security with algebrai. Very few candidates inspection that the pe $6k$ and was independ of g . A significant number this question. M1 for their part (i) = 62.4 or $\frac{62.4}{6}$	realised by rimeter must be ent of the value did not attempt Their part (i) must be algebraic in terms of k or k and g Their (a) can be rearranged Note: 6k – 2g = 62.4 scores M1 but does not score the second mark as from wrong
ii	10.4 nfww	2	Examiner's Comme Many candidates sho strategy to solve the pained M1 for writing (c) (i) = 62.4, but if the they found themselve make further progress 62.4 ÷ 2 or 62.4 ÷ 4 wincorrect methods. A candidates took 62.4 of <i>k</i> and tried to work perimeter. Assessme Candidates need to be generalising common	wed no clear problem. A few their answer to at contained <i>g</i> as unable to s. were popular very few to be the value out the nt for learning
	Total	8		

54	a	Correct curve through given points	3	B2 for 6 points correctly plotted or B1 for 4 points correctly plotted or B1 for 4 points correctly plotted Examiner's Comments Many candidates plotted the points yet did not join them with a curve. A few tried to use straight lines. Many did not correctly plot the points within a half-square accuracy (particularly the point at (1, ~1), possibly because of the proximity of the '1' label on the x-axis). Some points were plotted using very blunt pencils. The few curves that were seen were often not accurate and missed the plotted points by more than a half square vertically or horizontally. A surprising number of candidates made no attempt to plot the points and did not respond at all. Assessment for learning Candidates need to practise accurately plotting points and how to
				then draw a curve through them.

				Strict FT from their graph. B1 for each or ruled $y = 6$ cutting their curve twice or points indicated on their curve where $y = 6$	Must have graph to score Do not accept coordinates Half square accuracy or better For thick lines mark centre of line Ruled line within half square of <i>y</i> = 6 throughout <i>Their</i> curve may be a polygon or straight line If intersection at mid-point of small square e.g1.15 accept - 1.2 or -1.1	
				Examiner's Comme	nts_	
				Many candidates could not score marks here as they had not drawn a graph in part (a). A few did draw the horizontal line $y = 6$ to earn B1, but a very few candidates drew $x = 2$ instead.		
				Where lines did exist, reading was often inaccurate; readings were often taken to be at the nearest integer point (for example, if their graph crossed the line where the <i>x</i> -coordinate was -1.2, it would be given as -1). Some responses seemed to be the intercepts of their curve with the <i>x</i> -axis, while others gave responses that seemed unrelated to the graph they had drawn.		
		Total	5			
55		2160 with correct working	5	Method 1 M3 for 5×0.040e	Correct working for 5 marks requires	
					•	

		ı	Ι	
				show substitution and evaluation e.g. 1850 × 0.04 × 5 oe = 370 1750 × 0.04 × 5 oe = 350 e.g. 500 × 0.04 × 5 oe =100 with no working or insufficient working
			When candidates say should mean "4% of the invested =" and not "4% of 360 =" Make a professional just is correct. 360 × 1.04 or 360 × 0. indicators of error. 4% of 360 = 14.40 and = 72 is wrong method are finding 4% of the in 4% of the original amount in the examples below are earned by the state those preceding it. Not just for the statement in some methods, M2 never seen	adgement if this 04 are good d then 14.40 × 5 d because they enterest and not bunt. v, the M marks ement with ent.
			(72) × 100%	M1

			$360 \div 5 (= M1 \text{ or } \frac{20\%}{360}$ $72)$ $4\% = M1$ 72 $4\% = M1$ 72 $4 (= M2 \text{ or } \frac{1\%}{18} = M2$ $18)$ $(18) \times 100\%$ $100 = M3 \text{ or } = M3$ (1800) 1800
			$360 \div 4 (= M1 \text{ or } \frac{20\%}{360}$ $90)$ 1 year M1 = 72 $(90) \div 5 (= M2 \text{ or } \frac{1\%}{18} = M2$ $18)$ $(18) \times 100\%$ $100 = M3 \text{ or } = M3$ (1800) 1800
			360 ÷ 20 (= $\mathbf{M2}$ or $= 360$ 18) 1% = $\mathbf{M2}$ 18 (18) 100% × 100 $=$ (1800) M3 or = $\mathbf{M3}$

360 ÷ 4 (= 90)	M1 or	20% = 360 5% = 90	M1
(90) ÷ 5 (= 18)	M2		
(18) × 100 = (1800)	M3 or	100% = 1800	М3

Note: the scheme say "May be implied by 72" but, as shown in the example above, 72 can come

from wrong method. 72 is a good guide to look for supporting evidence to judge if the figure comes from correct method.

Examiner's Comments

In this 'You must show your working' question, more successful candidates organised and/or annotated their work so that it was clear that they were using a correct method to answer the question.

Misreads and misinterpretations were common. Many candidates attempted compound interest, which received zero marks. Others misinterpreted the information and began by finding 4% of 360, which is an incorrect method. This however did lead to 14.40 and then 72, which is also a value that appeared in correct methods and so examiners were looking to the method used to award marks.

Similarly, some candidates just wrote $5 \times 360 = 1800$ with no supporting evidence. As this can come from the incorrect assumption '£360 per year for 5 years', again examiners needed to look to supporting evidence to know that a correct chain of reasoning had been used.

Some candidates mixed incorrect attempts with correct ones without distinguishing which they favoured, or which had been used to reach the final answer. Candidates are advised to cross out rejected working and to practise setting out answers logically.

Total 5

56		201 or 201.1 or 201.06 to 201.09	2	M1 for $\pi \times 8^2$ oe	π gives 201.0619 3.142 gives 201.088 For M1 π may be evaluated allowing $\frac{22}{7}$ or 3.14 or 3.142
				Examiner's Comme	<u>nts</u>
				Many candidates gain method mark here fo many gained the sec correctly evaluating the	r 8^2 π or 64 π and ond mark for
				Common incorrect m $8\pi^2$, $4^2\pi$ and $16^2\pi$, a calculations of the cir	s well as
		Total	2		
57	а	<i>h</i> ⁴ final answer	1		Not h4 unless 4 clearly raised
				Many correct answer Common errors were and 4 ^h . Sometimes H condoned.	s were seen. 4 <i>h</i> (or <i>h</i> 4), <i>h</i> ³
	b	3g(f+4) final answer	2	B1 for 3(fg + 4g) or g(3f + 12)	Allow e.g. 1f and inclusion of × Condone missing final bracket Correct answer seen and then spoilt B1
				Examiner's Comme	<u>nts</u>

					Correct solutions were in the minority here.	
					Partial factorisations were seen, almost always $3(fg + 4g)$ and very rarely $g(3f + 12)$.	
					A number of candidates extracted $3g$ as a common factor but gave the answer $3g(f + 12)$.	
					Most candidates did not demonstrate knowledge of factorisation and showed misunderstanding of algebraic rules. Answers such as 36fg or 15fg ² were common.	
					Assessment for learning	
					Candidates need to be familiar with standard algebraic processes.	
			Total	3		
					Allow any clear intention e.g. arrow to expression	
58	а		Expression	1	Examiner's Comments	
					Fewer than half the candidates correctly identified this as an 'Expression'. A large number chose 'Equation', even despite the lack of an equals sign.	
	b		Identity	1	Allow any clear intention e.g. arrow to identity	
	1					
					Examiner's Comments	

					'Equation' and 'For incorrect answers.	mula' were popular
					Assessment for learning	
					Candidates need to familiar with algebra	
			Total	2		
59	а		$(x-2)(x+7)$ $x^2 - 2x + 7x - 14$ or better $x^2 + 5x - 14 = 70$ or $x^2 - 2x + 7x - 14 = 70$	B1 M2 A1	M1 for 3 out of 4 terms correct A1 dep on B1M2 With no errors leading to the answer Examiner's Comm This question was a almost all candidate high proportion who and marks were no The majority of attention the information protection the information protection. Some candidates at the perimeter of the with Question 23 each	a challenge for es. There was a o did not attempt it t given regularly. empts worked with rather than using vided to arrive at ottempted to find e shape (in contrast
	b	i	(x + 12)(x - 7) [= 0]	M2 B1FT		

		⁻ 12 and 7		M1 for $(x + a)(x + b)$ where $ab = -84$ or $a+b=5$ or $x(x + 12) - 7(x + 12)$ or $x(x - 7) + 12(x - 7)$	Condone (x + 12)(x - 7) = y for 2 marks For M2 and M1 condone the omission of the final bracket.
				correct or FT their linear factors	(x - 12)(x + 7) then -12 and 7 scores M1B0 If both correct after $x(x + 12) - 7(x + 12)$ or $x(x - 7) + 12(x - 7)$ allow M2B1 BOD
				Examiner's Comm	<u>ients</u>
				Responses to this of much less successfuestions in previous with the otherwise handidates. This manegative integer in the succession of th	ful than similar us series, notably nigh performing ay be due to the
				Some candidates a use of factor pairs of struggled to make p	of -84, but often
				Factorisations such and (x - 12)(x + 7) vigiven M1, with som correctly solving the B1 also for Follow 1	vere seen and e candidates then em to receive the
				Often 'factorisations' numbers 5 and 84 without attempts to with the relevant su	within the backets, identify numbers
				Some candidates was olutions without ar which could be give	ny factorising,
				Poorer attempts ofter rearrange the equatrying to factorise it.	tion rather than
	ii	14	1		

				FT dep on 2 integer answers given in part (b)(i) their largest positive answer + 7	
				Examiner's Comme Those with a correct (b)(i) generally score along with some 'Folimarks being given to incorrect (b)(i) response expression given on the question.	answer for part d the mark here, low Through' candidates with nses.
		Total	8		
60	а	2y + 11x	2	B1 for 2 <i>y</i> or 11 <i>x</i> in final answer	re successful in core 2 marks often less frequently such as $11x - 2y$.
	b	30 <i>ab</i> or 30 <i>ba</i>	1		

62		Total 10 nfww	3	Accept answer $^{-10}$ or \pm 10 M2 for $6^2 + 2 \times 4 \times 8$ oe or M1 for $[u^2 =] 6^2$ or $[2as =] 2 \times 4 \times 8$ M2 implied by $[v^2 =] 100$ or $\sqrt{100}$ M1 implied by $[u^2 =] 36$ or $[2as =] 64$
	þ	3 27	2	Examiner's Comments This was another highly successful question for candidates. Those that hadn't correctly answered part (a) often struggled here too, again using the + 3 or + 7 increase between the given numbers and so 4 and 0 were common incorrect responses for the first term and then 20 and 24 for the fifth term. A few made arithmetic slips and gave 26 or 28 for the fifth term.
61	а	Total 15	1	Common errors seen in this question were omitting either the <i>a</i> or <i>b</i> , or adding the numerical components to give 11 <i>ab</i> . Examiner's Comments The vast majority gave a correct answer here. Incorrect responses often came from finding the increase between just one pair of adjacent terms (either + 2, + 3 or + 4) and then applying that to the 10, resulting in responses of 12, 13 or 14.
				successful here than part (a). Correct responses generally gave 30ab; very few gave 30ba.

				Examiner's Comments Candidates often struggled here and knowledge of kinematics formulae appeared to be very weak. Almost all candidates were aware they needed to substitute the values into the formula, but the majority did so incorrectly. Another common error was candidates believing that the acceleration needed to be squared because of its unit (hence using 16 for the acceleration). Of those that did substitute correctly, some didn't apply BIDMAS rules and
				added before multiplying. A number of candidates didn't square root to then get their final answer (this was given 2 marks if their calculation was otherwise correct). Some candidates calculated 2 + a + s
				rather than 2 × a × s. Exemplar 1
				$6^{2} + 2 \times 467^{2} \times 3$ $36 + (2 \times 16 \times 8)$ $\frac{256}{36}$ 256 202 202 202
				This exemplar demonstrates some of the common errors. The candidate substitutes correctly into the formula, however they misinterpret the units for acceleration and use 4 ² . They carry out their calculation correctly, but then do not square root their answer (writing 'v² =' in their working could have avoided this).
		Total	3	The response was given M1 for 6 ² .
		x < 2	3	
63			4	
1	I		1	

			Solution to inequality
	AND	B2 for <i>x</i> < 2 or M1 for 7 <i>x</i> < 11 + 3 or better	Allow M1 for this expression with other inequality symbols or equals sign or [x =] 2 as solution (can be implied by mark/circle on the diagram) or trials leading to selection of 2 or final correct trial using 2
			Displaying the solution:
		AND	Display must show an inequality that fits on the number line for FT Mark to candidate's advantage either $x < 2$ or their inequality
		B2FT for their inequality correctly shown or B1FT for	Accept an arrow of any length or a line reaching – 3
		correctly placed circle for their x < 2 but with hollow circle and incorrect arrow or for filled circle with correct arrow	If no solution to inequality seen: Hollow circle at 2 arrow to left M1B2 Hollow circle at 2 arrow to right M1B1 Solid circle at 2 arrow to left M1B1 Solid circle at 2 arrow to right M1B1 Solid circle at 2 arrow to right M1B0 Mark at 2 no line or arrow M1B0

					Circle and/or arrow at other than 2 M0B0
				Examiner's Comm	
				inequality algebraic successful in finding of 2, either with an correct inequality. No correctly used a hole representation, although the right rather than	ally were g the critical value equals sign or the Most candidates llow circle on their ough some lost a eir arrow or line to
		Total	4		
64		146 with correct working	5	M2 for $3x + 36 = 180$ oe or M1 for $(x - 14) + (2x + 50) = 180$ oe AND A1 for $[x =]$ 48 M1 for $2 \times their$ $x + 50$ If 0 or 1 scored, instead award SC2 for 146 with no or insufficient working If 0 scored, instead award SC1 for $[x =]$ 48 or $y = 2x + 50$	"Correct working" requires evidence of at least M2 or M1M1 Trials: Correct answer from trials scores 5 Allow correct substitution into (x – 14) + (2x + 50) to imply M1 if 180 also stated Dep on at least M1 their x < 65 SC marks may be seen on diagram
				Examiner's Comm	<u>ients</u>

	Total	5	Although there were solutions, many carsee the link between and 180 and so struinitial equation. The to set up the equation solve it correctly and then frequently did proceed. Some candidates where $y = 2x + 50$.	on $2x + 50$, $x - 14$ aggled to form the ose who managed on often went on to d find x as 48° , but not know how to
65	[x =] 7 [y=] 4 final answer	3	M1 for correct method to eliminate one variable A1 for x = 7 A1 for y = 4 If 0 scored SC1 for a pair of values that satisfies one of the original equations Examiner's Comm This question was a question than other have been, since the were low integer values decimals. Several of given all 3 marks. Falgebraic methods many candidates decimals and candidates decimals are decimals. Several of given all 3 marks. Falgebraic methods many candidates decimals are decimals of the solutions of the solutions. Others were able to values that satisfied were given SC1.	a more accessible is on this topic ie two solutions alues rather than candidates were fully correct formal were rare, but emonstrated they meant by tions and were able to by inspection.
	Total	3		

66	а		1	May be drawn at the end of the sequence Ignore extras Examiner's Comments Many candidates were able to draw pattern 4 correctly.
	b	31 Add 3 to each pattern 3n + 1 or 3 × 10 + 1 or 10 + 21	1 1	Response Mark P[attern] 4 = 13, p 5 = 16, p 6 = 19, p7 = 22, p8 = 25, p9 = 28, p10 = 31 1 1 Goes up by 3 each time so 7 x 3 = 21 = 31 (10 was amount of dots on last diagram) 1 1 31. Horizontal dots increase by 2 each time and vertical dots increase by 1 each time 1 1 31 Its 10 up, 10 to the left, 10 to the right and 1 in the middle 1 1 31 patterns go up 3 1 1 31. I added 3 six times. 1 0 31 It doesn't give any numbers 1 0 31 by using the calculator 1 0 31. I added 3 1 0 28 dots in pattern 10. I counted the dots in pattern 4 and added 3 six times. 0 1 30. All patterns gain 3 as they get bigger. 0 1 Examiner's Comments Many recognised that the patterns increased by 3 dots and worked out the number of dots as 31. Some did not give a complete explanation, for example just stating 'add 3' rather than 'add 3 each time' or similar.
		Total	3	

67	а	36	1	Examiner's Comm Many correct respo common error was values into the equa calculate the value.	nses were seen. A to substitute the ation, but not to
	b	1.5	3	M1 for 30 = 4(c + 6) M1FT for 7.5 = c + 6 or for 30 = 4c + 24 OR Without formal algebra: M1 for 30 ÷ 4 implied by 7.5 M1 for (their 7.5) – 6 Examiner's Comm Some candidates we the correct responsionark, usually for 30 then making errors bracket.	vere able to give e. Others gained 1 0 = 4(c + 6) and
		Total	4		
68		12 cao with correct working	4	M1 for πr^2 [=] $6\pi r$ or πr^2 [=] $3\pi d$ M1 for cancellation by π implied or factorising e.g. $\pi r(r-6) = 0$ or $r(r-6) = 0$	"Correct working" requires evidence of at least M1M1 FT their initial statement if possible Accept $\pi r^2 = 6\pi r$ followed by $r^2 = 6r$ as showing

			Total	3		required in x + 3y Must see working for FT
70			9 –15 with correct working	3	M2 for (x - 9)(x + 15) or M1 for (x + a)(x + b) where either ab = - 135 or a + b = 6 OR M2 for 2 correct trials with any number or M1 for 1 correct trial with any number If 0 scored, SC1 for 9 and -15 with no working or insufficient working	"correct working" requires $M2$ $M2$ and $M1$ may be implied by grids and other forms such as $x(x + 15) - 9(x + 15)$ Must see substitutions e.g. $5^2 + 6 \times 5 - 135$ Use of formula $M2$ for $-6 \pm \sqrt{(6)^2 - 4 \times [1] \times -135}$ or 2×1 better e.g. 2 $M1$ for formula with at most two errors Do not award if wrong working
			Total	3		
71	а	i	46	1		
		ii	5 cao	2	M1 for either step reversed soi	May be seen on diagram eg + 4, ÷ 5, 25 implies 21 + 4 or 21 + 4 ÷ 5 or answer 21.8
	b		y = 5x - 4 final answer	2		

				M1 for final answer 5x - 4 or $y = 5x + 4$ or $y = kx - 4$ $(k \neq 0)$ or $y = 5x - c$ where $c > 0$ If 0 scored SC1 for final answer $x = \frac{y+4}{5}$	Accept throughout y on right e.g. $5x - 4 = y$ Accept throughout $x \times 5$ or $x5$ or $x \times k$ etc but not x^5 $y = 5(x - c)$ $5x - 4y \text{ scores } 0$ Do not accept arrows e.g. $5 \rightarrow x \rightarrow 4$ $y = 5 + y$
		Total	5		
72	а	18	1		
	b	12	1		
		Total	2		
73	а	5x + 10	1		
	b	$4b^2-4b$	2	B1 for 4 <i>b</i> ² or – 4 <i>b</i>	
		Total	3		
74		2.6 oe	3	M2 for $4x + 6x = 19 + 7$ oe OR M1 for $10x - 7 = 19$ or $10x = k$ or $4x = 26 - 6x$ or $kx = 26$ AND M1 for $x = \frac{b}{a}$ FT their $ax = b$ seen	e.g. $x = \frac{26}{10}$ 0e

	Total	3	
75	3, 4, 5	3	B2 for 2 correct and no extras or all 3 correct and one extra OR M2 for 2 < x ≤ 5 or M1 for 2 < x or x ≤ 5
	Total	3	
76	-2	2	M1 for 10 or ⁻ 12 or 5 × 2 + 4 × ⁻ 3 Not 10x or ⁻ 12y oe
	Total	2	
77	[a =] 17 [c =] 13 with correct working	5	B4 for one correct answer with correct working OR M1 for 5a + 4c = 137 oe M1 for 2a + 3c = 73 oe M1 for method to find a common coefficient, allow one arithmetic error M1 for correct method to eliminate 1 variable, allow one arithmetic error M1 for correct method to sliminate 1 variable, allow one arithmetic error OR If 0 or M1 scored, instead award SC2 for both "Correct working" requires evidence of at least M1M1M1 Correct answer from trial and improvement scores 5 Accept other variables for a and c If substitution method used M1 for correct rearrangement of equation A sign error is not an arithmetic error

					correct answers with no or insufficient working Or SC1 for two answers which satisfy one of the original conditions Correct answers Do not allow 14.6[0] 14.6[0] for SC1	
			Total	5		
78	а	i	2 <i>r</i> – 5 <i>t</i> final answer	2	B1 for $2r$ or $-5t$ in final answer or correct answer seen and spoilt $2r + -5t$ scores B1	
		ii	a ⁴	1		
		iii	8 <i>b</i> ³	1		
	b		3(a-5b)	1	Allow 3(1 <i>a</i> – 5 <i>b</i>)	
			Total	5		
79	а		33	1	Ignore extras after 33	
	b		Add 6	1	Need direction and quantity	
	С		The sequence is all odd numbers oe	1	Response Mark $6n + 3 = 80$; $n = 12.8(3)$ it's not an integer 1 The last digits of the number always end with 1, 3, 5, 7, 9 never 0 1 After 75 it goes to 81 1 After 69 it goes to 75 so 80 can't be 1 bod If you add on in 6's you get to 75 not 80 1 bod Nearest term would be 81 which is 1 off 1 bod 33, 39, 45, 51, 57, 63, 69, 75, 81 1 bod $80 \div 6 = \frac{13\frac{1}{3}0}{10}$ There is 75 in the sequence, followed	

				by the sequence to 75 0 Because the sequence didn't start at 0 it started at 3 means that the sequence isn't the 6 times table 0 Because the next two terms only take you to 75 0 Because each term is prime 0 None of the terms end in 0/are a multiple of 10 0 Because 80 is an even number – not enough 0 Because it's not possible to add 6 from the terms to get to 80 0	
		Total	3		
80	а	$d = \frac{f-5}{4}$ or $d = \frac{f}{4} - \frac{5}{4}$	2	M1 for $f - 5 = 4d$ or $\frac{f}{4} = d + \frac{5}{4}$ or $\frac{f - 5}{4}$ or $\frac{f}{4} - \frac{5}{4}$ as answer	Allow 1.25 for $\frac{5}{4}$
	b	48	2	M1 for 4 + 5.5 × 8	
		Total	4		
81		$k = \frac{t-h}{3}$ oe final answer	2	B1 for answer $k = \frac{t-h}{3}$ oe or M1 for $t - h = 3k$ or $\frac{t}{3} = k + \frac{h}{3}$	For 2 oe allow $k = \frac{t}{3} - \frac{h}{3}$ For B1 oe allow $\frac{t}{3} - \frac{h}{3}$ $t - 3k - h = 0$ does not count as the first correct step
		Total	2		
82		33 with correct working	5	M1 for $2x + 5 + 4x - 3 + x = 100$ may be implied by a subsequent correct equation	"Correct working" requires evidence of first method and at least M1 and $x = 14$ or M3 if using trials or M2M1 for non-

			M1 for simplifying their equation to $ax + b = c$ or $7x + 2 = 100$	algebraic method Three separate expressions are not enough
			M1 for the first correct step in solving <i>their</i> ax + b = c	Ignore inclusion of % in working $7x + 2 = 100$
			and M1 for	e.g. 7x = 100 - 2
			substituting <i>their</i> 14 into 2 <i>x</i> + 5 OR	7 <i>x</i> = 98 scores M1M1M1
			M3 for one complete correct evaluation of $2x + 5 + 4x - 3 + x = 100$ or M2 for one complete correct evaluation of $2x + 5 + 4x - 3 + x = a$ total or M1 for one correct evaluation of each expression $2x + 5 [+] 4x - 3 [+] x$ If $0, 1$ or 2 scored, instead award SC3 for answer 33 with no or	For M marks with trials: allow each term or each expression from the question evaluated separately e.g. (Use 10) 20 + 5 + 40 - 3 + 10 = 72 or 25 (+) 37 (+) 10 = 72 Alternative method (Non algebraic) M2 for 100 - 5 + 3 or - 2 AND M1 for their (100
			insufficient working	- 5 + 3) ÷ 7
			If 0 or 1 scored, instead award SC2 for <i>x</i> = 14 with no or insufficient working	M1 for substituting <i>their</i> 14 into 2 <i>x</i> + 5
<u>I</u>	<u> </u>	<u> </u>		1

			Total	5		
83	а	i	20 <i>a</i> final answer	1		Accept 20 × a or a20 or a × 20
		ii	<i>b</i> ⁵ final answer	1		Do not accept b5 but BOD if 5 appears raised above the base of b
		iii	c ⁸ final answer	1		Do not accept c8 but BOD if 8 appears raised above the base of c
	b		2(5 – 4 <i>y</i>) final answer	1		May be 2×(5 – 4y) or ⁻ 2(⁻ 5 + 4y)
			Total	4		
84	а		(x + 8)(x + 3) final answer	2	M1 for $(x + a)(x + b)$ where a + b = 11 or $ab = 24orfor x(x + 3) + 8(x + 3) or x(x + 8)+ 3(x + 8)$	Condone $(x + 8)(x + 3) = 0$ and $(x + 8)(x + 3) = y$ for 2 marks
	b		⁻ 8 and ⁻ 3	1	FT their (a) dep on two brackets	Allow correct solutions if part (a) incorrect
li .			Total	3		
85	а		15	1		
	b		-5	1		
			Total	2		

						contradictions
						Do not allow
			Total	2		
87			2 8	2	B1 for each	
			Total	7		
		ii	9	2	M1 for recognition of square number pattern	e.g. √100, 9 × 9, 25, 36, [49,]
	b	i	6 + 10 and 16	1		
86	а		No and 56 oe or No and 36 and 40 or No and 25 and 21	4	M3 for 1 + 3 + 6 +10 + their 15 + their 21 or for their 15 + their 21 and 60 - their 20 or for 60 - (their 15+10+6+3+1) and their 21 or B2 for 15 and 21 or B1 for 15 or 21 OR M2 for 60 - (their 15 + 10 + 6 + 3 + 1) or 60 - their 20 or M1 for [60 -] 1 + 3 + 6 + 10	implied by 56 implied by 36 and 40 implied by 15 and 21 their 15 > 10 and their 21 > their 15 B2 implied by 36 M2 implied by 36 M1 implied by 20

			side $4x = 17 - 6$ they should have added 6 onto 17 1 $4x = 17 - 6$ 1 They have subtracted 17 - 6 instead of adding 6 to 17 1 $4x$ isn't equal to 17 - 6, $4x - 6$ is equal to 17 <i>first part is correct, second part is irrelevant not a contradiction</i> 1 Darcie hasn't worked out the right way as they have subtracted 6 from 17 1 It should be $4x = 17 + 6$ 1 On the 2^{nd} part where it says $4x = 17 - 6$ wrong they shouldn't have subtracted 6 from 17 1 They should have added 6 to 17 1 bod Darcie did not add 6 0 $4x = 17 + 6$ $4x = 23$ $x = 5.75$ with no further explanation 0 They should have added 6 0 You need to do the same to both sides 0 Darcie got the answer wrong because it is $x = 5.75$ need to see a reason 0 They subtracted 6 from 17 when it's supposed to equal 17 0 They weren't supposed to subtracted them <i>do they mean</i> $4x - 6$ <i>or</i> $17 - 6$ 0
b	They have used 27 as the initial velocity and 6 as the final velocity	1	Accept u and v if clear $u = 6$ and $v = 27$ Response Mark $v = 27$ not u (or $u = 6$ not v) 1 They put 27 in the place of the u and not the v (or 6 in the place of the v and not the u). It's meant to be $27 = 6 + (a \times 5)$ not $6 = 27 + (a \times 5)$ 1 Initial velocity not 27 1 v not initial velocity 1 They didn't substitute properly they put 27 m/s for initial velocity (or 6 m/s for final velocity) 1 They have written the final velocity (or initial velocity) down in the equation in the wrong place which therefore makes their calculation wrong 1 bod They have used the 27 m/s (or 6 m/s) when that is the velocity, they were using the wrong numbers 0 They substituted the formula wrong

				not enough 0 It should equal 27 not <i>v</i> (or 6 not <i>u</i>) 'it isn't enough 0	
		Total	2		
89		Open circle above 0 Arrow pointing left	1 1		For 2 marks, arrow may be of any length but must start at 0, mark intent For the arrow accept a line starting at 0 and reaching -4
		Total	2		
90		6x + 2 final answer	4	M2 for $24x + 8$ isw or M1 for $8x - 1 + 9x + 3 + 7x + 6$ M1 for their '($24x + 8$)' ÷ 4	Must be an algebraic expression in the form $ax + b$ $b \neq 0$
		Total	4		
91		$5x^2 + 16xy + 3y^2$ final answer	3	M2 for three correct terms from $5x^2 + 15xy + [1]xy + 3y^2$ or M1 for two correct terms in the expansion above	More than 4 terms mark the worst 4 Accept values in a grid 16xy is 2 terms Do not accept for M2 or M1 5x3y, 5xx, 3yy, 1x1y unless processed further
		Total	3		
92	а	35	1		Ignore extras 35, 43, 51 even if incorrect

	b	Add 8	1	May be seen on diagram with no contradiction on answer line Response Mark +8 in the answer space 1 Add 8 1 Up 8 1 +8 on diagram, answer space blank 1 8 × 5 - 5 refers to the 5 th term 1 8n - 5 alone not an explanation 0 Gap of 8 quantity but no direction 0 Took 11 from 3 to work out the difference and then added it onto 27 0 +8 on diagram, answer in answer space mark answer line See answer
		Total	2	line
93	а	30 final answer	2	M1 for 81 + 9 implied by 90 or their (81 + 9) ÷ 3 or 30 × 3 = 90 – 9 = 81 oe
	b	y = 3x - 9 final answer	2	Accept throughout y on right e.g. $3x - 9 = y$ Accept throughout $x \times 3$ or $x \times 3$ or $x \times 3$ or $x \times 4$ but not $x \times 3$ or $x \times 4$ but not $x \times 4$ or $x \times 4$ but not $x \times 5$ or $x \times 6$ but not $x \times 6$ or $x \times 6$ but not $x \times 6$ or $x \times 6$ but not $x \times 6$ or $x \times 6$ but not $x \times 6$ but not $x \times 6$ or $x \times 6$ but not $x \times 6$ but not $x \times 6$ or $x \times 6$ but not $x \times 6$ but not $x \times 6$ but not $x \times 7$ where $x \times 7$ or $x \times 7$ but not $x \times 7$

		Total	4		
94		20	3	B1 for [median =] 2.5 M1 for <i>their</i> median × 10 – 5	Accept only 20 for 3 marks If 3 (mode) or 2.25 (mean) or other wrong value from 1 to 3 used M1 still available.
		Total	3		
95		5 nfww	4	B2 for [<i>a</i> =] 8 or M1 for 9 <i>a</i> = 72 or better and M1 for showing substitution/use of their <i>a</i> e.g. 4 × <i>their</i> 8 + 8 <i>b</i> = 72 oe or better or [<i>b</i> =] (18 – <i>their</i> 8)/2	If another value for a is used to find b do not award B2 T&I only scores if ending at 8 or better may be e.g. $a + 2b = 18$ or $\frac{72 - 4 \times their 8}{8}$
		Total	4		
96		[x =] -2 [y =] 3	3	method to eliminate one variable B1 for $y = 3$ B1 for $x = -2$ If 0 scored SC1 for a pair of values that satisfy one of the original	Allow one arithmetic error in subtraction of terms or in rearrangement If previously rearranged must be correct rearrangement
		Total	3		
97	а		1		

		::: :::			May be at the end of the sequence
	b	Add 3 [each time] or goes up in 3s oe or $3n - 2$ oe or correct calculation leading to 22 using 8, 7, 7 or values from given terms e.g. $8 + 7 + 7$ or $3 \times 7 + 1$ or 13 [dots] and 9 [dots] or [1, 4, 7, 10, 13] 16, 19, 22	1 1		Ignore a drawing Mark the best part if no contradiction 8 + 7 + 7 may be 7 on right two columns and one more on left oe 3 times previous pattern number + 1 oe
		Total	3		
98	а	12 <i>a</i> final answer	1		Condone poor algebra e.g. 12 × a and a × 12 but not a ¹²
	b	$\frac{1}{3}x^3$ or $\frac{x^3}{3}$ final answer	2	B1 for $\frac{1}{3}x^k \ k \neq 0$ or $gx^3 g \neq 0$ as answer	Condone 1 before term in x Allow $\frac{x^4}{3x}$ and $\frac{2x^3}{6}$ for B1
		Total	3		
99	а	13 ⁻ 3	2	B1 for each	
	b	Correct curve	3	points accurately	Tolerance ± ½ small square radially

				or B1FT for 5 or 6 points accurately plotted	
	С	⁻ 1.7 or ⁻ 1.8 1.7 or 1.8	2 FT	Strict FT B1 for either FT their graph	If curve is between 2 grid lines accept either value as correct answer Do not accept answers to morethan 1d.p. Do not allow ±√3 or answers with no graph
		Total	7		
100		[137] 91 93 279 in any order With correct working	5	M3 for 5x and 465 or for (150 × 4 – 137 + 2) ÷ 5 A1 for 93 or M2 for a correct algebraic expression and correct constant or for 150 × 4 – 137 [+ 2] or for 137 + 91 + 93 + 279 = 150 × 4 oe or for trials leading to the correct answer	"correct working" requires at least $M2$ 150 × 4 can be implied by 600 throughout e.g. 137 + x – 2 + x + 3 x and 600; 5 x – 2 and 463 Do not accept x , 3 x or x – 2 as correct algebraic expressions for $M2$
					Condone e.g. 137 + x – 2 +

				or M1 for 137 + x – 2 + x + 3x nfww or 150 × 4 or 600	<i>x</i> + 3 <i>x</i> ÷ 5 for M1 Mark to
				If 0 or 1 scored, instead award SC2 for 91, 93, 279 in any order with no or insufficient working If 0 scored, SC1 for [x =] 93	candidate's advantage
		Total	5	101 [X -] 30	
101	а	2t final answer	1		Accept 2 × t Condone t2
	b	y(y − 5) final answer	1		Accept e.g. $1y(y-5)$, $(y-0)(y-5)$ Condone final bracket
					missing
		Total	2		
102	а	3	2	M1 for (160 – 85) ÷ 25	Condone 160 – 85 ÷ 25 for M1
	b	10:35 [am] with correct working	5	M1 for 5 × 25 + 85 oe A1 for 210	"correct working" requires evidence of at least M1 M1

				M1 for their 210 correctly converted into hrs and mins or decimal hours soi by 3 h 30 m or 3.5 [h]	Provided their 210 is not a multiple of 60 Do not accept 3.3 hours as a correct conversion from 3 h 30 m, but condone 3.3 used in the next step
				M1 for 2:10 – their time If 0, 1 or 2 scored, instead award SC3 for answer 10:35 [am] with no working or insufficient working If 0 or 1 scored, instead award SC2 for 3 h 30 m or 3.5 [h] with no working or insufficient working If 0 scored, SC1 for 210 with no working or insufficient working or insufficient working or insufficient working or insufficient working	Their time may be in whole hours, minutes, hrs and mins or decimal hours
		Total	7		
103		<i>x</i> ≤ 5	4	B2 for $x \le 5$ or M1 for $3x \le 11 + 4$ or better or $x = \frac{4}{3} \le \frac{11}{3}$ or better	Solution to inequality Allow M1 for this expression with other inequality symbols or equals sign or [x =] 5 as solution (can be implied by

				B2FT for their inequality correctly shown or B1FT for correctly placed circle for their x ≤ 5, but with hollow circle and correct arrow or for filled circle with incorrect arrow	mark/circle on the diagram) or trials leading to selection of 5 or final correct trial using 5 Displaying the solution: Display must show an inequality that fits on the number line for FT Mark to candidate's advantage either x ≤ 5 or their inequality Accept an arrow of any length or a line reaching 1 If no solution to inequality seen: Filled circle at 5 arrow to left M1B1 Hollow circle at 5 arrow to left M1B1 Hollow circle at 5 arrow to left M1B1 Hollow circle at 5 arrow to right M1B0 Mark at 5 no line or arrow M1B0 Circle and/or arrow at other than 5 M0B0
		Total	4		
104	а	x + 160	1		

	b	200 nfww	4	B1 for 5 <i>x</i> M1 for 5 <i>x</i> = their (<i>x</i> + 160)	their (x + 160) cannot be numeric and must lead to an equation that can be solved when equated to 5x e.g. if their (x + 160) is 5x then M0 FT correctly solving their linear equation in x
		Total	5		
105	а	$x^2 + 3x + 5x + 15$ [= $x^2 + 8x + 15$] Taylor with a correct statement about definition of an identity or of an equation or Taylor with correct supporting work and statement	M1 B1	Alternative Method	May be seen in the work space or within their statement and it might be seen in e.g. a table where the addition can be implied e.g. an identity is true for all values of <i>x</i> or e.g. this cannot be solved to get a value of <i>x</i> or e.g. left-hand side is the same as the right-hand side Accept "neither, because if it was an identity then it would have ≡"

			M1 for shows LHS = RHS for at least three values of x B1 dep for Taylor with their correct statement e.g. a quadratic equation does not have three solutions [so by elimination it is an identity]	
			Response for the 1 Taylor – the expreafter the equal sign ('same' implies ider 'same' implies ider 2 Taylor – (x + 3)(x as x² + 8x + 15 1 3 Taylor – the state doesn't gives a value would be to find a state 4 Identity – (x + 3)(x same answer expand 15 (condone identity 1 5 Taylor – they are but are equal to the score as they have sides are the same forms) 1 BOD 6 Taylor – (x + 3)(x 8x + 15 when expand 7 Taylor there is not (not enough) 0 8 Taylor – it is identiformula is equal to to each other is not 9 Taylor – you're not anything out, it gives (they say you're not asked to work it out it cannot be solved)	ession before and are the same atical in form) 1 intical in form + 5) is the same ment in the box ie, an equation pecific number 1 is + 5) has the inded as $x^2 + 8x + 4y$ instead of Taylor) written differently same (this is ok to clarified that the 2 but in different + 5) is equal $x^2 + 4y$ instead of thing to work out if ying how each each other (equal enough) 0 of asked to work is you the answer if say you're not is rather than saying
b	(x + 9) (x - 2)	M2 B1FT		For M2 or M1 condone omission of final bracket

				M1 for (x + a)(x	
		⁻9 and 2 final answer		+ b) where a + b = 7 or ab = -18 or for x + 9 [= 0] and x - 2 [= 0]	e.g. $(x + 5)(x + 2)$ as $a + b = 7$ or e.g. $(x - 9)(x + 2)$ as $ab = -18$
				strict FT for correct solutions from their quadratic factors	e.g. FT $x = ^{-}5$ and $x = ^{-}2$ from $(x + 5)(x + 2)$
				If 0 scored SC1 for answer ±2 and ±9	
		Total	5		
106	а	3x + 15 final answer	1		
	b	$t = \frac{t+3}{5} \text{ or } t = \frac{t}{5} + \frac{3}{5}$	2	M1 for $r + 3 = 5t$ or for $\frac{r}{5} = t - \frac{3}{5}$ or for answer $\frac{r+3}{5}$ or for correct step to answer after incorrect	
				first step shown	
		Total	3		
107	а	11 and 2	2	B1 for each	
	b	Correct curve	3	B2FT for 6 or 7 correct plots B1FT for 4 or 5 correct plots	Tolerance ±1 small square for plotting and curve through correct points Condone slight feathering – must not be ruled If large blob for plot, check centre of blob
	С	⁻ 2.5 to ⁻ 2.4 and 2.4 to 2.5	2FT		

				Strict FT B1 for either FT their graph	Tolerance ±½ a small square Do not allow exact answers or answers with no graph Do not FT from a straight line graph If more than 2 intersections, B1 for each correct intersection on the answer line. If more than 2 answers, mark the worst
		Total	7		
108		55 with correct working	6	M1 for $3x - 10 = 2x + 35$ M1dep for $\pm x = k$ or $kx = \pm 45$ ($k \neq 0$) A1 for $x = 45$ OR M1 for at least two trials of $3x - 10$ or evaluated for $x = 45$ M1 for at least two trials of $2x + 35$ or evaluated for $x = 45$ A1 for both expressions evaluated as 125 when $x = 45$ AND M1 for $3 \times their$ $x - 10$ or $2 \times their \times x + 35$ M1 for $y = 180 - (2 \times their \times x + 35)$ oe If 0 scored SC2 for answer	'Correct working' requires evidence of at least M1 AND M1 i.e. we expect to see a minimum of an equation or trials leading to $x = 45$ and the substitution

				55 with no working or insufficient working Or SC1 for <i>x</i> = 45 with no or insufficient working	
		Total	6		
109		x > 9	3	M1 for $3x - 12 >$ 15 or $x - 4 > 5$ M1 for next correct productive step FT <i>their</i> first step	For method marks condone incorrect inequality sign or 'equals'
		Total	3		
110	а	15	1		
	b	14	2	M1 for ÷ 5 and + 2 soi or for 60 ÷ 5 = 12 soi	
		Total	3		
111		[d =] 1.9[0] [c =] 2.15 with correct working	5	B4 for 1 correct answer with correct working OR M1 for 4d + 3c = 14.05 oe M1 for 2d + 5c = 14.55 oe M1 for method to find a common coefficient, allow 1 arithmetic error	Accept other variables for d and c 'Correct working' requires evidence of at least M1M1M1 Correct answers from trial and improvement score 5 If substitution method used: M1 for correct rearrangement of equation

					M1 for correct method to eliminate 1 variable, allow one arithmetic error OR If 0 or M1 scored instead award SC2 for both answers correct with no or insufficient working Or SC1 for two answers which satisfy one of the original equations	M1 for correctly substituting into other equation A sign error is not an arithmetic error
			Total	5		
112			38	1		
			Total	1		
113	а		8ad³ cao, final answer	2	B1 for 8 <i>a</i> or <i>d</i> ³ in final answer or correct answer seen and spoilt	B1 for e.g. 8 <i>a</i> × <i>d</i> ³
	b		5x (9 - x) final answer	2	B1 for 5(9x – x²) or x(45 – 5x) as final answer or correct answer seen and spoilt	Accept 5x(9 – 1x) Condone final bracket missing
			Total	4		
114		i	39	1		Condone further terms if correct
		ii	Added 8	1		Needs quantity and direction e.g. add 8,

					plus 8, + 8Not n[th] + 8
		Total	2		
115		4.5 final answer	2	M1 for 8 <i>x</i> = 41 – 5 or better	Accept $4\frac{1}{2} \cdot \frac{9}{2}$ or $\frac{36}{8}$ for 2 marks
		Total	2		
116		$\frac{32-1}{3}$ is not an integer	2	M1 for $\frac{32-1}{3}$ or 31 and 34 Response Mark 32 is a multiple of 4 b would make it 33 whith of 4 2 Shows 10th term as 3 as 34. 32 lies between term 2 $3n + 1 = 32$ and so 30 10.33 which is not an umber/integer 2 Shows 10th term as 3 as 34 1 Sequence starts at 1 each time meaning it 32 0 + 1 in $3n + 1$ 0	ch isn't a multiple 31 and 11th term 10th and 11th 1 = 31 and so n = a whole 31 and 11th term and adds on 3
		Total	2		
117	а	$x \times x$ or $4(x + 3)$ seen $x^2 = 4x + 12$ or $x^2 = 4(x + 3)$ Correctly rearranging to $x^2 - 4x - 12 = 0$ without error	M1 M1dep A1	Dependent on first M1 and not from rearrangement of original equation	Allow [area of] square = x^2 or [area of] rectangle = $4x$ + 12 x^2 and/or $4x$ + 12 may be written with correct shape(s)
	b	⁻ 2 6 nfww	3		•

				B2 for one correct solution nfww OR M2 for $(x + 2)(x - 6) = 0$ Or M1 for $(x + a)(x + b)$ where $ab = -12$ or $a + b = -4$ OR M2 for two correct trials using $-4 \le x \le 0$ and two correct trials using $4 \le x \le 0$ or M1 for two correct trials using $-4 \le x \le 0$ or two correct	e.g. one trial is when x = 2, 2 ² - 4 × 2 - 12 = -16 Accept as trial x = 2 and -16 x -4
С		Length [of square] cannot be negative	1	Dependent on negative answer in (b)	Do not accept x cannot be negative
d	i	36	1	FT (<i>their</i> positive root from (b)) ²	If two positive roots seen in (b) accept either or both used in (d)(i) and in (ii) BUT, if one answer right and one wrong in any part, 0 marks
	ii	9	1		

				FT (<i>their</i> positive root from (b)) + 3	
		Total	9		
118		3p + 5h final answer	2	B1 for 3 <i>p</i> or 5 <i>h</i> seen	
		Total	2		
119	а	<i>y</i> ≥ 3 <i>x</i> cao	1		Do not accept extras
	b	3x = 9 cao	1		Do not accept extras
	С	2x + y cao	1		Do not accept extras
		Total	3		
120		$b = \frac{A+3c}{2}$ Oe	2	M1 for $\frac{A+3c}{2}$ oe or correct first step e.g. $A + 3c = 2b$ or $\frac{A}{2} = \frac{2b}{2} - \frac{3c}{2}$ or for next correct step towards isolating b following first error	Note $b = \frac{-3c - A}{-2}$ oe is correct e.g. Following $2b = A - 3c$ $b = \frac{A - 3c}{2}$
		Total	2		
121	а	5(x - 4)	1	Examiner's Comm	

				the majority of candidates.	
				More confident candidates went straight to the correct answer. Others tried to collect terms and $^{-}15x$ was sometimes seen, or they didn't deal with the constant term and just gave $5(x-20)$.	
	b	7x(2+x)	2	B1 for $7(2x + x^2)$ or $x(14 + 7x)$ Condone missing final bracket Examiner's Comments As with part (a), this was not understood by the majority and a small minority did not attempt it. Where candidates seemed confident with algebra, partial factorisation was the usual error. Less confident candidates had more trouble. Some responded with $21x^3$ or $21x^2$ (some reached this and then squared the coefficient, giving $441x$), while others squared the 7 and wrote $14x + 49x = 63x$. Some candidates extracted a factor containing x , but then left x in both terms inside the bracket, e.g. $7x(2x + x)$.	
		Total	3		
122	а	v − u = at seen as single statement	1	Accept e.g. $-v$ + $u = -at$ but not e.g. $\frac{v-u}{t} = at + t$ Examiner's Comments Very few candidates were able to show that the rearrangement was correct. More than a third of candidates did not attempt the question.	

PhysicsAndMathsTutor.com

			terms	ounderstandings,
			being shown • writing added	th no processes or subtracted ne formula with
			Exemplar 2	U + QL = 5 Q
			This type of layout is successful for this typ question. No clear storearrangement, e.g. would have scored the	be of 'Show' ep is seen in the $y - u = at$, which
b	1.5 oe	2	M1 for correct substitution $\frac{9-3}{4}$ oe	e.g. $1\frac{1}{2}$ or $\frac{6}{4}$ or $\frac{3}{2}$ For M1 accept a two-step evaluation with an arithmetic slip eg $9-3=5$ followed by $5\div 4$ Do not accept $\frac{3-9}{4}$ for M1
			Examiner's Comme More candidates were using the given formuthan in (a). Around th	e successful with

					attempted the question.	
					For those who did not score marks, the common error was substituting the values for v , u and t incorrectly. Many of these gave $\frac{3-9}{4}$, but the 4 was also sometimes misplaced.	
			Total	3		
100					Accept 7 × a and a7 and a × 7	
123	а	i	7a final answer	1	Examiner's Comments	
					Most candidates gave the correct response. However, misunderstandings with algebra were revealed by answers such as $6a^3$, $7a^3$, or $6a + a$.	
					B1 for – x seen or [+]4 – 3y seen in final answer	
		ii	− <i>x</i> + 4 − 3 <i>y</i> final answer	2	Examiner's Comments	
				_	This question saw many candidates score at least one mark, often for either – <i>x</i> or – 3 <i>y</i> + 4 in their answer.	
					Again, some poor algebra was seen in working, such as $x - 3y + 4 = 4xy + 4 = 0xy$, or $3y + 4 = 1$, or $2x - 3x = 5x$.	
					Examiner's Comments	
	b		1	1	This was well done and was often accompanied by working.	
					The common errors were ⁻ 9 and 9, although other numbers did occur.	
			Total	4		
124	а		Expression	1		

				Examiner's Comments Candidates showed a lack of algebraic understanding here. The most common response was 'equation'.
	b	Equation	1	Examiner's Comments Candidates seemed to consider π as an algebraic term here rather than an irrational number. The most common response was 'Formula'. When 'Equation' was used in part (a), candidates appeared reluctant to repeat it in this part, rendering the mark inaccessible; these candidates generally responded with 'Expression' instead.
		Total	2	
125	а	5x final answer	1	Do not accept $\frac{5x}{1}$ but condone $5x^1$ Examiner's Comments Candidates struggled to access this question and often gave a numerical response (e.g. '25'), or just rewrote the question in the form '5 $x^2 \div x'$. There was little evidence that candidates understood that they should cancel common factors, using the same method as for numerical fractions.
	b	x = 5y - 10 or x = 5(y - 2) final answer	2	B1 for answer 5 <i>y</i> – 10 or 5(<i>y</i> – 2)

					M1 for a correct first step $5y = x + 10 \text{ or } y - 2 = \frac{x}{5}$ If 0 scored SC1 for correct step to final answer FT incorrect first step	SC only awarded for 2 step attempts
					Examiner's Commentary Candidates showed a knowledge or clear properties of the control of the co	lack of socesses here. ole steps at once as made this marks, since first step seen, or orrect' follow rect first step isn't step just
			Total	3		
126	а	i	24	1	Examiner's Commental Almost all candidates this correctly. A few was formula as the answer more than just the near	responded to rote the nth term r. Some gave
					1 No, it goes up in 4's number to that is 400 2 No, if we kept addir 400 then 404. 1 3 No, 100 x 4 = 400 s 1 4 4 does not divide in	[or 404] 1 ng 4 it would go

				number (not incorrect but not enough without saying why) 0 8 No, it goes up in 4s not 2s. 0 9 No, the sequence is going up in 4's. 0 Examiner's Comments The most successful candidates referred to 402 not being in the 4 times table. There were also many responses that stated '100 × 4 = 400 so the next would be 404'. Of the responses that could not be given, statements that it 'goes up in fours' without referencing 402 were common.
b	i	8	1	Examiner's Comments Many candidates were able to identify the term-to-term rule to reach a correct answer. However, common errors were 7 and 6.
	ii	Multiply by 2 oe	1	1 each number is doubled. 1 2 X2 every time you go up. 1 3 I multiplied the next term x 2. 1 4 You double 4. 1 5 The terms keep adding itself to get the next number. 1 6 You add the number by itself to give the next number. 1 7 the number that is added on is doubled for the next number 1 8 +4 (accompanied with the correct patterns on the sequence oe is acceptable) 1 9 +4 (alone does not score) 0 10 Half each number. 0 Examiner's Comments Candidates with a correct response in (b) (i) almost always achieved the mark in this part. Those with an incorrect response in (b) (i) of 7 usually followed it with an explanation here suggesting they had only considered the later three terms shown and not the two decimal terms.

				Those with an incorre (b)(i) of 6 usually here term-to-term rule 'add were only considering terms shown.	e stated the I 2', as if they
	То	otal	4		
127	20	00 with correct working	6	M1 for 2 $(x + 2) = 3x - 4$ oe M1 for reaching $ax = b$ FT $their$ equation A1 for $x = 8$ OR Trials M1 for one trial into $2(x + 2)$ and $3x - 4$ evaluated correctly M1 for two trials of $2(x + 2)$ and $3x - 4$ evaluated correctly A1 for $[w =]$ 10 and $[l =]$ 20 AND M2 for $(their x + 2)$ × $(3 \times their x - 4)$ or M1 for $(their x + 2)$ or $(3 \times their x - 4)$	"Correct working" requires evidence of at least M1M1A1 or alternate convincing approach FT from an equation with x on both sides only. their x must be a positive integer and stated their x or their length/width

					may be on the diagram
				If 0 or M1 scored, instead allow SC2 for answer 200 with no or insufficient working	
				If 0 scored, instead allow SC1 for <i>x</i> = 8 with no or insufficient working	
				Examiner's Comme	<u>nts</u>
				There were very few recognised the need solve an equation her marks were given.	to set-up and
				There was frequent e poor algebraic skills. candidate would 'simple expressions given in state 'x + 2 = 2x' and	Often a plify' the the question and
				Most candidates achieving marks did so for trial and improvement methods. Rarely was evidence seen to give marks for finding the value of x , but marks were given for substituting their value of x into the expressions for the width and length and subsequently multiplying these together.	
				A few did reach 10 ar algebraically and so we maximum of 2 marks their length of 20 by t	vere given a for multiplying
				The most common m to work with the area immediately.	=
		Total	6		
128	а	$x > 0.6$ or $x > \frac{3}{5}$ final answer	2		

			oe or for x + 1.8 > 2.4 oe or for answer 0.6 oe with or without equality or wrong inequality symbol Examiner's Comment Fewer candidates we on this part compared There was some confiterms, for example re as well as muddled in containing an equals	re given 2 marks I to part (a). fusion combining aching 14x > 12, lequalities
b	(x + 4)(x + 3) - 4 and - 3	M2 B1FT	M1 for (x + a) and (x + b) where ab = 12 or a + b = 7 for correct solutions from their quadratic factors If 0 scored SC1 for answers ±4 and ±3 Examiner's Commentation of the examination of the quadratic did often gave the concommon error following factorisation was to grather than -3 and -4.	able to correctly c, but those who rrect response. A ng a correct ive 3 and 4

		Total	5		
				M3 for 6p – 8 and their (6 × 5 + 4) correctly used together	eg an equation with a first step to solve
				or 34 + 8 = 6p	
				or (34 + 8) ÷ 6	
				or 6 × 7 – 8 = 34	
				OR	
				M1 for 6 × 5 + 4 may be implied by 34	
129		7 nfww	4	M1 for 6p – 8 or 34 + 8 or for one correctly evaluated trial	
				Examiner's Comme	<u>nts</u>
				Many candidates read answer. Of those who all were able to comp of finding the output f 34. Few candidates in working back from this function B, although a was to subtract 8 from adding it. Few candidusing trials to find the gave the output 34; for it proved to be an inealthough often succession.	o did not, almost elete the first step or function A of made errors when is value with a common error in 34 rather than lates resorted to evalue of p that or those that did, fficient method,
		Total	4		
130		10 <i>a</i> – 5 <i>a</i> ² final answer	2	B1 for 10 <i>a</i> or – 5 <i>a</i> ² in final answer	

		Total	2	Examiner's Comments Many candidates were given both marks here. Those that received 1 mark usually received it for having 10a in their final response.	
131		$k = \frac{t+h}{2}$ oe final answer	2	B1 for answer $\frac{t+h}{2}$ oe or M1 for $t+h=2k$ or $\frac{t}{2}=k-\frac{h}{2}$ Examiner's Commarks in this questistandard technique rearrange the formula candidates did use their rearranged for Many attempted to equation in one step the wrong answer. Where a first step was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about how to deal was a common error about the common error	as the first correct step nents ndidates scored 2 on and used scorrectly to ala. Most k as the subject of mula. rearrange the p, often producing was seen, $2k = t - h$ or. equently unsure with the constant 2. and $k = \frac{th}{2}$ were

				Roughly a fifth of ca	
		Total	2		
132		37 with correct working	5	M1 for $2x + 5 + 3x - 1 + x = 100$ may be implied by a subsequent correct equation M1 for simplifying their equation to $ax + b = c$ or $6x + 4 = 100$ M1 for the first correct step in solving their $ax + b = c$ and M1 for substituting their $ax + b = c$	"Correct working" requires evidence of first method and at least M1 and $x = 16$ or M3 if using trials or M2M1 for non-algebraic method Three separate expressions are not enough Ignore inclusion of % in working $6x + 4 = 100$ scores M1M1 e.g. $6x = 100 - 4$ $6x = 96$ scores M1M1 For M marks with trials: allow each term or each expression from the question evaluated separately

			e.g. (Use 10) 20 + 5 + 30 - 1 + 10 = 64
		M3 for one complete correct evaluation of $2x$ + $5 + 3x - 1 + x$ = 100	or 25 (+) 29 (+) 10 = 64
		or	Alternative method (Non algebraic)
		M2 for one complete correct evaluation of 2x + 5 + 3x - 1 + x = a total	M2 for 100 – 5 + 1 oe
		or	or
		M1 for one correct evaluation of each expression $2x + 5$ [+] $3x - 1$ [+] x	M1 for – 5 + 1 or – 4
			AND
		If 0 , 1 or 2 scored, instead award	
		SC3 for answer 37 with no or insufficient working	M1 for <i>their</i> (100 – 5 + 1) ÷ 6
			AND
		If 0 or 1 scored, instead award	
		SC2 for <i>x</i> = 16 with no or insufficient working	M1 for substituting <i>their</i> 16 into 2 <i>x</i> + 5
		Examiner's Comm	ents

					Just less than half or responded to this questioned part marks. Some candidates for expression by adding expressions but did an appropriate equal proceed constructive question. Those care form an appropriate achieved at least 3 this equation accuranumber didn't compate when solving the Some candidates retheir solution but did value back into the eshort words. Some candidates training the short words. Many of the short were and suppressions. Many of the light was a contract the whole.	ormed a correct ong the given on't use this to form ation and so didn't ely with this ordidates who did equation often of the equation often of the equation of the equation of the equation. The equation of the equation of
					Much poor algebra $2x + 5 = 7x$ and $2x - 5 = 7x$	
			Total	5		
						Accept 12 × a or a12 or a × 12
133	а	i	12a final answer	1	Evaminar'a Comm	onto
					Examiner's Comm	
					Most candidates ga here. The common × 4 × a was also se	error was 7 <i>a</i> , but 3
		ii	<i>b</i> ⁴ final answer	1		Do not accept b4 but BOD if 4 appears raised above the base of b

					Examiner's Comm	ents
					This was reasonable but weaker responsas the answer.	
		iii	c ⁶ final answer	1	Examiner's Comm This part showed a response to part (a common error.	similar pattern of
	b		3(3 − 2 <i>y</i>) final answer	1	Examiner's Community Less able candidate on this question. The answer was 3y, who understanding of the community of the commu	es did not do well ne common wrong ich indicated poor
			Total	4		
134	а		(x + 6)(x + 4) final answer	2	M1 for $(x + a)(x + b)$ where $a + b = 10 \text{ or } ab = 24$ or for $x(x + 4) + 6(x + 4)$ or $x(x + 6) + 4(x + 6)$ Examiner's Comm	

					question, but often attempted to factorise into a single bracket and gave responses such as $x(x + 10) + 24$. Some candidates had knowledge of the requirement of factor pairs of +24, but often did not know how to use these correctly. Responses commonly awarded the M1 were $(x + 12)(x - 2)$ and $(x + 8)(x + 3)$.	
					FT their (a) dep on two brackets	Allow correct solutions if part (a) incorrect
					Examiner's Comm	ents
	b		–6 and –4	1	Those candidates v marks in part (a) we give a correct answ +4 and +6 were ofter roots.	who scored full ere rarely able to er here in part (b);
					Very few follow-thro be given, as most ro (a) were single brace	esponses in part
			Total	3		
						I
					Examiner's Comm	<u>ients</u>
135	а		18	1	A high proportion of understood the requorerations.	
					The most common $x = \frac{6}{3} = 2$.	error was to give
	b		-7	1	Examiner's Comm	ents
					The majority of can	didates identified

					division as the inveneeded here. The control to ignore the negation C and C and C as the inverse oper responded with C C C C C C C C C C	common error was ve and give $x = 7$. In't identify division ation generally
			Total	2		
					M3 for 3 + 6 +10 + 15 + their 21 + their 28 or for their 21 + their 28 and 80 – their 34	implied by 83 implied by 49 and 46
			No and 83 oe or No and 49 and 46 or No and 25 and 28		or for 80 – (<i>their</i> 21+15+10+6+3) and <i>their</i> 28	implied by 25 and 28
					or	their 21 > 15 and their 28 > their 21
					B2 for 21 and 28	B2 implied by 49
136	а			4	or B1 for 21 or 28	
					OR	
					M2 for 80–(their 21+15+10+6+3) or 80–their 34	M2 implied by 25 or 46
					or	
					M1 for [80-] 3 + 6 +10 + 15	M1 implied by 34
					Examiner's Comm	<u>ients</u>
					Candidates access numerous ways.	ed this question in

Almost all candidates attempted to find the number of counters needed for patterns 5 and 6. The most common methods to then reach the answer were to find the total counters needed (i.e. 83), or to find the number of counters remaining after pattern 4 and the total counters needed for patterns 5 and 6, then compare them.

Many candidates made basic arithmetic errors in both addition and/or subtraction, but many showed their method and in most cases were able to score M2 or M3. The subtraction 80 – 34 was often seen as 56. Some candidates chose to draw the patterns out, but then often miscounted their counters.

Some candidates added the pattern numbers (i.e. 5 and 6) instead of the counters needed for those patterns.

Assessment for learning

This question is a 'Show how you decide' question.

If calculations aren't shown, then only correct numbers can imply method, as stated in the mark scheme.

Candidates must show the comparison figures, not just make a statement.

They do not need to write an extensive justification; the expected justification will be in their figures.

Exemplar 2

				This candidate adds the given numbers 3, 6, 10 and 15 in stages, but with a numerical error (they reach 24). They then subtract this from 80 to get 56. The candidate correctly identifies 21 and 28 as the number of counters in patterns 5 and 6 counters, then adds them (to get 49). The candidate is given M3 for 'their 21 + their 28 and 80 – their 34'.	
b	i	10 + 15 and 25	1	Examiner's Comm This question was a candidates, with onlerrors being made.	inswered well by
	ij	10	2	M1 for recognition of square number pattern If 0 scored SC1 for answer 11 Examiner's Comm Very few candidates access this question candidates did not presponse. It was very rare to sidentify the square response the final column of the many candidates we the continuing pattern.	e were able to n. Many provide a ee a candidate number pattern in he table and not ere able to write

				Candidates often formed the equation $2k + 1 = 144$ and attempted to solve it, reaching 71.5 as an answer.
		Total	7	
				B1 for each
				Examiner's Comments
				Candidates found this question particularly difficult.
				Working seen was often in trials.
137		2 8	2	Candidates that attempted the question often entered numbers without working.
				The most common mark given was B1 for the 2 on the left side of the identity. The 8 was more challenging to reach, due to the 'double negative' from expanding the bracket on the right of the identity.
				There was a high number of candidates who did not attempt this question.
		Total	2	
				Do not allow contradictions
				Response
138	а	He has added 4	1	For additional information refer to 2023 June (J56001) Mark scheme Appendix within downloadable additional mark guidance.
				Examiner's Comments
				Many candidates realised the error, however some just showed how to solve the equation without pointing out the error as required.

	p	He has used 29 as the initial velocity	1	Accept <i>u</i> and <i>v</i> if clear <i>v</i> = 29 not <i>u</i> = 29 Response For additional inform 2023 June (J56001 Appendix within do additional mark guide Examiner's Common Not many candidate give the correct real to the acceleration aneeded to be square certainly due to confunits for acceleration candidates referred brackets.	es were able to son. Many referred and stated that it led (almost fusion with the on). Other
		Total	2		
139		Open circle above –2 Arrow pointing right	1 1	Examiner's Comm There seemed to be that -2 was a key vawere unaware of he the diagram. When placed correctly at went on to score the variety of alternative seen, including an a -2, a closed circle, a at the right-hand en mark/arrow above to	e an understanding alue, but many ow to record this on an open circle was 2, the majority e full 2 marks. A e annotations were arrowhead above an additional circle od of a line, a

					with no line, as well as arrows pointing in the wrong direction.	
			Total	2		
140			7x + 3 final answer	4	M2 for 21x + 9 isw or M1 for 5x +4 + x +2 + 9x - 5 + 6x + 8	
					M1 for <i>their</i> (21 <i>x</i> + 9) ÷ 3	Must be an algebraic expression in the form $ax + b$ $b \neq 0$
					Examiner's Common There were few fully for this question and number of candidate it. Candidates shou to attempt all questic candidates listed all but didn't attempt to together. Several discored 2 marks for knew they had to discored the third marks.	y correct answers d a significant es did not attempt ld be encouraged ions. Some I the expressions o add them id this correctly and 21x + 9. Some vide by 3 and
					A common miscond 4 can be simplified Exemplar 1	ception is that 5 <i>x</i> + to 9 <i>x</i> , etc.
					This response has	shown correct

				working for 3 marks correctly divided by have scored all 4 m	3, they would
		Total	4		
141		$3x^2 + 7xy + 2y^2 \text{ final answer}$	3	M2 for three correct terms from $3x^2 + 6xy + [1]xy + 2y^2$ or M1 for two correct terms in the expansion above Examiner's Comm Many candidates gatheir expansion, with expressions often or error was to simplificate the four condidates frequent collect like terms to with various product being attempted.	ave four terms in h the $3x^2$ and $2y^2$ correct. A common y $3x \times 2y$ to $5xy$. correct terms, tly were unable to gether correctly,
				? Misconce	eption
				A common miscond to add the terms in giving so $4x + 3y$.	
		Total	3		
142	а	33	1		

143	a	Total 20 final answer	2	Another mistake was just to explain the method for any sequence and not explain what they had actually done; they referred to finding the difference, but not what the difference was. M1 for $87 - 7$ implied by 80 or $their (87 - 7)$ $\div 4$ or $20 \times 4 = 80 + 7 = 87$ oe
	þ	Add 7	1	Appendix within downloadable additional mark guidance. Examiner's Comments Many candidates gave the correct answer to this question. Common errors were to give the <i>n</i> th term rule. This alone is not an 'explanation' of how they got their answer, but if they went on to show the <i>n</i> th term being used for the 5 th term then they were given the mark for an explanation.
				May be seen on diagram with no contradiction on answer line For additional information refer to 2023 June (J56001) Mark scheme
				Ignore extras 33, 40, 47 even if incorrect Examiner's Comments The majority of candidates were successful at answering this part of the question.

				Examiner's Comments		
				The majority of candidates gave the correct answer to this question.		
	þ	y = 4x + 7 final answer	2	M1 for final answer $4x + 7$ or $y = 4x - 7$ or $y = kx + 7$ ($k \neq 0$) or $y = 4x + c$ where $c > 0$ final answer or $x = 4y + 7$ If 0 scored SC1 for $x = \frac{y-7}{4}$ final answer	Accept throughout y on right e.g. $4x + 7 = y$ Accept throughout $x \times 4$ or $x \times 4$	
				Many candidates so common error was		
		Total	4	Sommon circi was	to confide x and y.	
144		y = 4x - 3 final answer	2		Accept throughout y on right	

					e.g. $4x - 3 = y$ Accept throughout $x \times 4$ or x^4 or $x \times k$ etc but not x^4
				M1 for final answer 4x - 3 or $y = 4x + 3$ or $y = kx - 3$ $(k \neq 0)$ or $y = 4x - c$ where $c > 0$	y = 4(x - c)
				If 0 scored SC1 for final answer	4 <i>x</i> – 3 <i>y</i> scores 0
				$x = \frac{y+3}{4}$	Do not accept arrows e.g. $4 \rightarrow xx \rightarrow 3 \rightarrow y$
				Examiner's Comm	<u>ients</u>
				A good number of of were seen. The incomplete multiplication symbol but some candidate and these were not common wrong ansanswered $x = y$.	lusion of the ol was condoned es included arrows . 4x – 3y was a
		Total	2		
				M1 for πr² [=]	"Correct working" requires evidence of at least M1M1
145		8 cao with correct working	4	$4\pi r$ or πr^2 [=] $2\pi d$	
				M1 for cancellation by π implied or factorising e.g. $\pi r(r-4) = 0$ or $r(r-4) = 0$	FT <i>their</i> initial statement if possible Accept $\pi r^2 = 4\pi r$ followed by $r^2 = 4r$

			as showing cancelling
		A1 for [radius =] 4 [and 0]	Dependent on M1M1
		$\frac{\text{Trials}}{\text{and } 4\pi r}$ using πr^2 and $2\pi d$ or πr^2 and $2\pi r$ or πr^2 and πd	Must use same value substituted for <i>r</i> in both formulas Answers required
		M2 for two correct trials with <i>r</i> ≠ 4	
		or two correct trials with first r ≠ 4 and then r = 4	
		or one correct trial with $r=4$	
		or	
		M1 for one correct trial with <i>r</i> ≠ 4	Dependent on M2 or M1
		A1 for [radius =] 4	
		If 0 or M1 scored, instead award	with no working or insufficient working
		SC2 for answer 8 cao	
		If 0 scored, instead award	with no working or insufficient working

				SC1 for answer 4 [and 0]	
				Examiner's Comments The modal response was no response. Some candidates did show the correct formulae but did not know what to do with them. Some attempted trial and improvement but did not always show clear substitution or consistent substitution of the same values in the area and circumference formulae. For some candidates, an attempted substitution of 360 was seen, suggesting a misunderstanding of the topic. Only the most able candidates tried to construct an equation between the two formulae.	
		Total	4		
146		[x=] 5 and [y =] 4 or (5, 4) seen 3 × their x + [1 ×] their y 19	B1 M1 B1	FT their (x, y) Examiner's Comm Very few candidate attempt at this quest attempts indicated attempts.	s made a sensible

				understanding of the solution of two equations being the point of intersection. Some solved the equations using algebraic methods. Some drew a line that they labelled ' $3x + 2y$ ' but offered no solutions. Some put a mark at the point of intersection but did no more. Some candidates found $x = 5$ and $y = 4$ and gave the answer 19 but did not show a clear substitution of these values into $3x + y$ and so gained only 2 marks. Some stated a value for $x = 1$ and $x = 1$ they then showed a clear substitution into $x = 1$ and their answer was correct, they also gained 2 marks. In 'Show' questions candidates must show clearly all the steps of working required to get to the answer.	
		Total	3		
147		−11 15 With correct working	3	M2 for $(x + 11)(x - 15)$ or M1 for $(x + a)(x + b)$ where either $ab = -165$ or $a + b = -4$ OR M2 for 2 correct trials with any number or M1 for 1 correct trial with any number	"correct working" requires $M2$ $M2$ and $M1$ may be implied by grids and other forms such as $x(x-15)+11(x-15)$ Must see substitutions e.g. $5^2-4\times5-165$

				If 0 scored, SC1 for –11 and 15 with no working or insufficient	M2 for $\frac{[]4\pm\sqrt{([-]4)^2-4\times[1]\times-165}}{2[\times 1]} \text{ or } \\ \frac{2[\times 1]}{2}$ better e.g. $\frac{4\pm\sqrt{676}}{2}$ M1 for formula with at most two errors Do not award if wrong working
				Examiner's Comments A very small minority correctly factorised and found correct values for x. Trial and improvement was the favoured technique and a few scored a mark when clear substitution, and a result, was seen. Stating one of the solutions but showing no working scored 0 marks. Some, wrongly, tried to treat this as linear equation and no marks were scored for this. This topic was not well understood by most candidates.	
		Total	3		
148	а	32	1	32 was a comr	esults were seen and non answer. The er of 2 was also
	b	10	1	Examiner's Co	omments

	ı	ı		T	T	
					Many gave the corr but 6 appeared free	
			Total	2		
149		i	37	1	Examiner's Comm Many correct answ an incorrect answe sometimes given. Common down very little wor	ers were seen but r of 2 was Candidates wrote
					M1 for either step reversed soi	May be seen on diagram eg + 3, ÷ 4, 20 implies 17 + 3 or 17 + 3 ÷ 4 or answer 17.75
		ii	5 cao	2	from taking 17 as the from ignoring the cooperations. Again,	correct answers fewer than in the mon errors were 65, ne input, or 7.75 orrect order of not much working a lot of candidates
			Total	3		
150			3x + 3	1		
			Total	1		